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What this talk is about

Figure 1: A Mathieu function (double eigenvalue) using my code

I wrote a collection of routines in Maple for solving the Mathieu

differential equation (and other routines for solving the Mathieu

eigenvalue problems, based on the method of Gertrude Blanch).
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The Mathieu equation

d2y

dz2
+ (a− 2q cos 2z)y = 0 (1)

1. y(0) = 1 with y ′(0) = 0 gives wI (z) A&S, MathieuC in Maple

2. y(0) = 0 with y ′(0) = 1, gives wII (z), MathieuS in Maple.

3. If 0 ≤ z ≤ 2π and a is such that y(z) is periodic then y(z) is a

“Mathieu function”. In this case a is an eigenvalue for the

parameter q.

4. Pure imaginary z gives a so-called “modified” Mathieu function.

5. The parameter q depends on the situation being modelled.

6. The desired solution can be highly oscillatory or of doubly

exponential growth.

4



An example

(a) Doubly exponential growth (b) Exponentially increasing frequency

Figure 2: The solutions of y ′′ − (a− 2q cosh η)y = 0 can grow doubly

exponentially and oscillate with exponentially increasing frequency; sometimes

both
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But why write my own solver?

• All Mathieu codes I knew of could not handle the double eigenvalue

problem explicitly.

• I wanted an independent method whose solutions could be verified a

posteriori

• We had a specific application in mind (blood flow in a vessel with

elliptic cross section) where solution for complex q was needed [1]

• The Maple model for evaluation of functions is inefficient for

evaluating functions at lots of points at once

• The multiple-precision features of Maple are convenient

6



Could there be other uses for this?

• Efficient high-accuracy solution of IVP (or BVP) for “D-finite” or

“holonomic” ODE

• Solving delay differential equations (need discontinuity handling,

though)

• Ned Nedialkov and John Pryce have already implemented a similar

method in a quite general way, for solving DAE. Their code DAETS

works well. Perhaps some experimental features of this Maple code

could influence future development of DAETS.

http://www.cas.mcmaster.ca/~nedialk/daets/
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Ancillary Code

To implement this code, I first wrote (with Erik Postma) an efficient and

numerically stable evaluator for what we call “blends” (arbitrary degree

two-point Hermite interpolants), together with routines for manipulating

them: integration, differentiation, rootfinding, addition, multiplication,

etc. [3]

A “string of blends” is a particular kind of piecewise polynomial

interpolant, that has some interesting properties, especially in the context

of ODE solving.
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Blends

Suppose that we know some Taylor coefficients of a function at two

distinct points, say z = a and z = b. Then put z = a+ s(b − a) and the

interval 0 ≤ s ≤ 1 determines a line segment in the z-plane.

Then (Hermite, Cours d’Analyse 1873)

H(s) =
m∑
j=0

pj

m−j∑
k=0

(
n + k

k

)
sk+j (1− s)n+1

+
n∑

j=0

(−1)j qj

n−j∑
k=0

(
m + k

k

)
sm+1 (1− s)k+j (2)

has H(j)(0)/j! = pj for 0 ≤ j ≤ m and H j(1)/j! = qj for 0 ≤ j ≤ n. Here

differentiation is wrt s so one has to be careful about bookkeeping.
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Numerical stability

1. Blends are ridiculously stable numerically. They have been used

successfully for degrees up to about 1000.

2. Numerical evaluation of a blend using the double Horner form gives

the exact value of a blend with Taylor coefficients

pj(1 + γO(m)+O(n)).

3. The Lebesgue function of balanced blends is bounded by 2 on [0,1]

or 2
√
m/π on [−1,1], for grade 2m + 1

See RMC “Blends have decent numerical properties” Maple Transactions

Vol 3 Issue 1 February 2023,

https://doi.org/10.5206/mt.v3i1.15890
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Making it jump

With pk = 1,0,0, . . . and qk − 1,0,0, . . . and taking m = 368 and n = 631

(so the grade m + n + 1 = 1000):

Figure 3: Look how smooth the plot is. No “Gibbs phenomenon” at all!
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Blendstrings

A string of blends, or blendstring, is a set of the form

B := {Lk}Mk=0 (3)

where each Lk is a list of the form

Lk := [αk ,Ck,0,Ck,1, . . . ,Ck,mk
] (4)

intended to represent the known Taylor coefficients Ck,j at the point

z = αk .

Two blendstrings are compatible if they have the same knots in the same

order and with the same degrees mk at each knot. Then they can be

added together, etc.
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A possible blendstring

Figure 4: The knots αk are plotted with solid circles. Taylor coefficients are

known at those knots. On the segment between any two knots, Hermite’s

formula gives a “blend” approximating the underlying function. My

implementation only allows straight lines of knots so far.
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The solver

Key features (remember it’s just for the Mathieu DE):

• Fixed order 2m that the user can choose by choosing degree m

(same at each end); default is 16 by Taylor series of degree 8 at

each knot. Hand-coded Taylor series loops. [Order is not the

whole story.]

• Variable stepsize (uses Gustafsson Lund & Soderlind 1988 PID

control)

• Implicit (the Mathieu equation is linear) Not Stiff; Oscillatory

• Collocation at s = 1/4 and s = 3/4 (Mathieu eq is 2nd order)

• Residual measured at s = 1/2; “defect control”, asymptotically

maximum

• The solver returns a blendstring (actually two) representing the

solution (and the other solution, which is sometimes needed and

basically free).
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A few details

Taking a step from zn to zn+1 = zn +∆z entails:

• Knowing m + 1 Taylor coefficients at z = zn. Call the solution,

blended with 0 at z = zn+1, L(z)

• Computing m + 1 Taylor coefficients of y(z) where

y ′′ + (a− 2q cos 2z)y = 0 with y(zn+1) = 1 and y ′(zn+1) = 0. Call

the solution, blended with 0 at z = zn, C (z)

• Computing m + 1 coefficients where y(zn+1) = 0 and y ′(zn+1) = 1;

call the solution blended with 0 at zn, S(z)

• Computing the residuals (defects) of C and S and L at

z = zn +∆z/4 and at z = zn + 3∆z/4 (requires 2nd derivatives of

the blends)

• Choosing constants A and B so that the residual of the blend of

AC (z) + BS(z) + L(z) is zero at both those points

• Testing the residual at zn +∆z/2 to see if the step should be

accepted; if so, the m + 1 coeffs of AC + BS + L at zn+1 are

recorded.
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A picture of the collocation

(a) L, C , and S (b) L and y = A · C + B · S + L

Figure 5: Simple collocation
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Asymptotic Expansion of the Residual

z = an + sh so 0 ≤ s ≤ 1 on the step h = an+1 − an

δ(s) = Kh2msm−1(s − 1

4
)(s − 3

4
)(s − 1)m−1 + · · · (5)

Max of polynomial occurs at s = 1/2 and is 2−2m−2.

The code applies this error control to both wI and wII simultaneously.

The constant K cannot be zero for both.
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An example

For q = 1.46876861378514 . . . i and a = 2.0886989027 . . . (the

Mulholland–Goldstein double eigenvalue) we compute the eigenfunction

associated to this double eigenvalue at 15 digit precision, using m = 10.

Below is the residual using 30 digit precision, verifying a posteriori.

Figure 6: Residual computed at preposterously many points
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Quadrature

There is a very interesting (exact!) quadrature formula for a blend, which

allows indefinite integration of blendstrings. I don’t know if this is a

reinvention.∫ 1

s=0

H(s) ds =
(m + 1)!

(m + n + 2)!

m∑
j=0

(n +m − j + 1)!

(m − j)!(j + 1)
pj

+
(n + 1)!

(m + n + 2)!

n∑
j=0

(−1)j(n +m − j + 1)!

(n − j)!(j + 1)
qj (6)

This is excellent numerically if n ≈ m. If the blend is very unbalanced,

though, the error can be exponentially amplified.
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When m = n = 2

When n = m = 2 we get the “twice corrected Trapezoidal rule”

I (h) =

∫ h

0

H(s) ds =
(p0
2

+
q0
2

)
h+

(p1
10

− q1
10

)
h2+

(p2
60

+
q2
60

)
h3 (7)

This is exact for polynomials of grade 5, so error is h · O(h6). More

precisely,

I (h)−
∫ h

0

f (s) ds = − 1

20

f (7)(0)

7!
h7 + O(h8) . (8)
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How John Butcher might derive that formula

Start with the partial fraction expansion

1

s4(s − h)4
=

1

h4s4
+

4

h5s3
+

10

h6s2
+

20

h7s

+
1

h4 (s − h)4
− 4

h5 (s − h)3
+

10

h6 (s − h)2
− 20

h7 (s − h)
.

(9)

Multiply by a polynomial I (s) of grade 6 = 8− 2. Then integrate over a

contour containing s = 0 and s = h (which gives zero because the degree

of the denominator is at least greater by 2 than the degree of the

numerator) and use the Cauchy Integral formula to obtain the following

formula.
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It’s so easy

I (h) =

(
D(3)(I )(h)

120
+

D(3)(I )(0)

120

)
h3 +

(
D(2)(I )(0)

10
− D(2)(I )(h)

10

)
h2

+

(
D(I )(0)

2
+

D(I )(h)

2

)
h + I (0) (10)

With D(I )(s) = H(s) we have the previous formula. The general case

can be carried out in exactly the same manner.

(I have not been able to find out if Hermite knew this formula. It

certainly seems as if he ought to have. John suggests that Gauss or even

Newton might also have known it.)
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Differentiation

The numerical routine Erik Postma and I wrote to evaluate blends also

has the ability to evaluate arbitrary derivatives, by what I call

“semi-automatic differentiation”. Blends are just polynomials, after all.

Still, this means that it is easy to differentiate blendstrings, and thus the

interpolants from this solver.
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Rootfinding

There is a companion pencil for a blend: its eigenvalues are the roots of

the polynomial expressed by the blend. Conversion to the monomial basis

is avoided. It works well if the degrees are not too large (binomial

coefficients do bother this method).

Another method is to use Inverse Cubic Iteration [2] (an English version

is on the arXiv). This method has convergence order 1 +
√
3 = 2.732

with the same effort as Newton’s method. It was inspired by thinking

about low-order blends.
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Example

Suppose m = 2 and we know the Taylor coefficients up to the second

derivative at s = 0 and at s = 1. Then the following matrix has H(s) as

determinant:

0 p′′(1)
2 p′(1) p(1) p′′(0)

2 p′(0) p(0)

−1 λ− 1 0 0 0 0 0

3 −1 λ− 1 0 0 0 0

−6 0 −1 λ− 1 0 0 0

1 0 0 0 λ 0 0

3 0 0 0 −1 λ 0

6 0 0 0 0 −1 λ


(11)
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Hermite Jump Zeros

If m = 21 and n = 13, with series 1,0,0, . . . at the left and −1, 0, 0, . . . at

the right, we get the following zeros using the companion pencil method

in double precision. (NB: the very high degree example earlier needs 450

digit multiple precision to find eigenvalues of the companion pencil).

Figure 7: Zeros of the grade 21 + 13 + 1 = 55 polynomial fitting the flat series

26



Where next?

The approximation theoretic properties of blends are “understood” in the

sense that there are results scattered throughout the literature. By and

large they are in many ways inferior even to Chebyshev expansion, much

less to the new techniques such as AAA. Nonetheless they seem

interesting to me and I shall spend some time writing things down to my

satisfaction.

I would also like to explore the singularity detection and location facilities

afforded by these interpolants.

Fine-tuning all the safety factors and timeouts in the code should make it

more efficient (10% ? more?) (Translating it to a fast language, e.g.

Julia, would do a lot more)

Extending this to variable order would be fun, but first, generalize it to

other IVP.
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Thank you for listening.

This work supported by NSERC, by the Spanish MICINN, and by the

Isaac Newton Institute in Cambridge.

I would like to particularly thank Erik Postma and my other co-authors,

and especially to thank John C. Butcher for teaching me the contour

integral technique for interpolation, by which I (re)derived all these

formulae.

Happy Birthday, John!
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la Real Sociedad Matematica Española 24.1 (2021), pp. 147–159.
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