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Example papers

Andrijana Burazin, Miroslav Lovric, and Veselin Jungić. A Cultural

Challenge: Teaching Mathematics to Non-mathematicians. Maple

Transactions Volume 1, Issue 1, Article 14144 (July 2021).

https://doi.org/10.5206/mt.v1i1.14144

There is also a transcript of an interview with these authors, conducted

by Judy-anne Osborn.

See also Jürgen Gerhard How to use Fibonacci numbers to teach

recursive programming Maple Transactions Volume 1, Issue 1, Article

14308 (July 2021). https://doi.org/10.5206/mt.v1i1.14308

See also the first Student Paper, Ewan Brinkman et al., The Theodorus

Variation, Maple Transactions Volume 1, Issue 2, Article 14500

(November 2021). https://doi.org/10.5206/mt.v1i2.14500
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Context

• Teaching Computational Mathematics is increasingly important

(Data Science, Visualization, Machine Learning, . . .)

• This is difficult because computational mathematics involves several

things at once: mathematics (algebra, analysis, and more!),

programming, complexity, and numerical stability, because of the

compromises needed for efficiency.

• Incorporating new things in the curriculum means removing

old things from the curriculum because we have only finite time

to teach, and the students have only finite time to learn.

• Active Learning is by far the most demonstrably effective teaching

method. See Scott Freeman et al., “Active learning increases student

performance in science, engineering, and mathematics”. Proceedings

of the National Academy of Sciences, 111(23):8410–8415, 2014.
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We live in a rough world

Figure 1: An infinite number of infinity symbols

“The existence of these patterns [fractals] challenges us to study forms

that Euclid leaves aside as being formless, to investigate the morphology

of the amorphous.” (Benoit B. Mandelbrot, The Fractal Geometry of

Nature, 1983, p. 1)
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What we did/are doing

We have taught/are teaching courses in Computational Discovery (also

known as Experimental Mathematics). At Western, the course mixed

first-year students and graduate students (the grad students got one

lecture per week extra, on advanced topics) in the Western Active

Learning Space; this had pods, and fancy screens, and fancy connectivity;

but the low-tech stuff worked very well, too.

So, what did we do, exactly? And why? Did it work?

Boy howdy, did it ever.
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Sequences

Two of the most fundamental connections between programming and

mathematics are the notions of function and of iteration. There is

enough depth to these simple ideas that they cause many students great

difficulty—a fact which those who grasp them easily often overlook. This

is known as Expert Blind Spot.

We use the mathematical notion of set as a data structure.

Teaching these notions in a programming context helps to motivate

(some) students. With first-year students, we can rely on their

enthusiasm and idealism, and play games with sequences.

Mathematically, we are reinforcing the notion of function. Iteration is a

function on the natural numbers!.
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Guessing: What comes next?

Consider the sequence

1,
3

2
,
17

12
,
577

408
, . . .

What is the next term in the sequence? We feel that this particular

sequence is actually too hard for the students to guess, so we don’t ask

them this—anyone here (who hasn’t seen it before) want to give it a go?
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Continued Fractions

What if we write the sequence as 1, 3/2 = 1 + [2], 17/12 = 1 + [2, 2, 2],

577/408 = 1 + [2, 2, 2, 2, 2, 2, 2], . . .?

1 + [2, 2, 2] = 1 +
1

2 + 1
2+ 1

2

This is easier to guess. [We will come back to this example.]
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Sneaking matrices in

Consider the 1 by 1 linear system t1x1 = 1, the 2 by 2 linear system

t1x1 + t2x2 = 1

−x1 + t1x2 = 0 (1)

and the 3 by 3 linear system

t1x1 + t2x2 + t3x3 = 1

−x1 + t1x2 + t2x3 = 0

−x2 + t1x3 = 0 . (2)

[The tk are given, and we want to solve for the xk .]
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Teaching determinants

The sequence of determinants of those systems are t1, t
2
1 + t2,

t31 + 2t2t1 + t3,

t41 + 3t21 t2 + 2t1t3 + t22 + t4 ,

and the 5 by 5 version has determinant

t51 + 4t31 t2 + 3t21 t3 + 3t1t
2
2 + 2t1t4 + 2t2t3 + t5 .

The students have an interesting time trying to guess the pattern here,

and even experts can be stumped: can you guess it?
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That rational sequence again

We tell the students that the sequence 1, 3/2, 17/12, . . . is being

generated by

xn+1 =
1

2

(
xn +

2

xn

)
. (3)

“Average your estimate with two divided by your estimate”; they can

understand that if xn <
√
2 then 2/xn must be greater than

√
2 (and

vice-versa), so the average of the two should be closer to
√
2.
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Residuals

Consider the squares of that sequence: 1, 9/4, 289/144,

(577/408)2 = 332929
166464 , . . .. Write them as 2− 1, 2 + 1/22, 2 + 1/122,

2 + 1/4082, . . .. Get the students to run the calculator to do the

arithmetic, at least. The pattern becomes clear.

Now make the observation that these numbers are increasingly close to 2.

That is, we have computed the exact square roots of numbers that are as

close to 2 as we want. The students get this idea. This puts them in

good position to experience the notion of continuity.

Consult the OEIS for the sequence of numerators:

http://oeis.org/A001601. Denominators: http://oeis.org/A051009.

There are an infinite number of places to go from here: let the students

drive! This is very scary for both the students and the teachers.

If they don’t want to drive just yet, then at least they are now ready to

go on to Newton’s method in general.
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Pass the Parcel (Active Learning)

Newton’s iteration in general is zn+1 = zn − F (zn)/F
′(zn). To explain

this to students we play the game of “pass the parcel”: given an initial

function (e.g. F (z) = z3 − 1).

• One student chooses an initial number z0 and passes it to the next.

Here n = 0.

• The receiving student computes the next number by

zn+1 = zn − F (zn)/F
′(zn) and passes that result to the succeeding

student.

• We go around the room until the iteration converges, or we get

bored, or everyone has had a chance.
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Students ask a crucial question

After this game has been played (maybe once is enough) you can pick a

function and ask a student to start the game off.

The student will ask “what initial estimate should I choose?”

You can throw that open to the class: it is an essential question. Once

they have discussed it, you can show them what happens when you take

every possible initial guess.

Maple has Fractals:-EscapeTime:-Newton for this, but it’s relatively

easy to write Python code for it as well.

Then let the students “go to town!”
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A Newton fractal

(a) Python version (b) Maple version

Figure 2: Newton fractals for a certain polynomial of degree 256.
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Student-generated fractals

Figure 3: Forty student-generated fractals, using the Maple

Fractals:-EscapeTime:-Newton package.
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Challenges from IEEE floats

• “Admit, for instance, the existence of a minimum magnitude, and

you will find that the minimum which you have introduced, small as

it is, causes the greatest truths of mathematics to totter.” —

Aristotle

• Floats are not associative: a+ (b+ c) ̸= (a+ b) + c necessarily. For

instance −M + (M + 1) = 0 while (−M +M) + 1 = 1 if

M = 3.14 · 1017.
• This (and other features) break students’ models of how the world

works.

• We have to enable students to deal with floats.
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Mandelbrot polynomials

Define z0 = 0 and zn+1 = z2n + c . The set of c for which this iteration

remains bounded is the famous Mandelbrot set.

If we do not define c as a complex number, then this sequence generates

polynomials in c : z0 = 0, z1 = c , z2 = c2 + c , and so on. We can factor

out one c and define pn(c) = zn/c and then pn+1 = cp2n + 1. The first

few are p0 = 0, p1 = 1, p2 = c + 1,

p3 = c3 + 2c2 + c + 1

p4 = c7 + 4c6 + 6c5 + 6c4 + 5c3 + 2c2 + c + 1

Zeros (roots) of these polynomials locate periodic orbits which are part of

the Mandelbrot set.
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Mandelbrot polynomials

function [p,dp]=mandelpoly(z,k)

% MANDELPOLY evaluates the k^th Mandelbrot polynomial

% and its derivative at one or more points.

% The k^th polynomial has degree 2^(k-1)-1

% Author PWL 2014.4.28 Modified RMC 2020.2.27

dp = zeros(size(z));

p = zeros(size(z));

for i=1:k-1

dp = p.^2+2*z.*p.*dp;

p = z.*p.^2+1;

end
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Mandelbrot polynomials are numerically awkward

(a) pk (c), k = 1, . . ., 9. (b) sign(p′k (c)) log10
(
1 + |p′k (c)|

)
Figure 4: Derivatives of pk(c) are large: p′

k(−2) = (4k−1 − 1)/3.

http://oeis.org/A002450
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Mandelbrot polynomial Newton fractal

Figure 5: Newton fractal of p6(z) (generated using Python)
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An open Mandelbrot polynomial conjecture

Are the coefficients of the Mandelbrot polynomials unimodal? Are they

(apart from the n trailing coefficients, which are Catalan numbers)

log-concave? We think so, but have no proof.

Figure 6: The coefficients of p7(c), the 7th Mandelbrot polynomial. It is

degree 64. 22

https://doi.org/10.5206/mt.v1i1.14037


Mathematical Notions Strengthened by Programming

Several mathematical notions are strengthened by these exercises.

• We use mathematical induction to prove correctness of the

automatic differentiation of the Mandelbrot polynomials

• The analysis of IEEE floats uses the IEEE guarantees

(fl(x op y) = (x op y)(1 + δ) for some |δ| ≤ u where u is the unit

roundoff, 2−53 for double precision)

• Practice with functions is always useful

• Simply working with visualizations improves people’s feel for

geometry.
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Matrices

Figure 7: A Bohemian Example: All eigenvalues computed numerically by

Maple of all 4096 seven by seven skew-symmetric tridiagonal matrices with

entries from {1, i , 1 + i , 1− i}. See bohemianmatrices.com 24

http://bohemianmatrices.com


Matrices

Figure 8: Another Bohemian Example: All eigenvalues of all 230 (over a

billion) 31 by 31 skew-symmetric tridiagonal matrices with entries from {1, i}.
Picture by Aaron Asner (5 hours on a 32 core computer; C code) 25



Bohemian Matrices

To avoid stealing the thunder of later courses, we introduce determinants

by the t1–x1 example stated earlier (anyone solve the puzzle yet?)

The topic of Bohemian matrices is particularly useful for this course: the

name was invented in 2015 (the concept is much older) and it is only

since then that so many open problems have been recognized. Some of

the conjectures at http://www.bohemianmatrices.com/ have been

resolved now, but by no means all; and it is very easy to generate more.

Many of the pictures in that gallery were student-generated, by the way.

Here are two open conjectures:

1. How many m by m skew-symmetric tridiagonal matrices with

population [1, i , 1 + i , 1− i ] have multiple eigenvalues?

2. Does the asymptotic distribution of the eigenvalues converge to

something as m → ∞? Is it a uniform distribution on a disk?

[Computation suggests ultimately uniform distribution on a square.

But why a square??]
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Why we teach it

The topic of Eigenvalues is incredibly important, and many introductory

courses give it short shrift (and introduce it by characteristic polynomials

anyway). The students simply need the practice.

We introduce the topic of matrix structure. They like this, and invent

their own, e.g. “inverted checkerboard” matrices.

And younger students tend to be more creative (what does this say about

our teaching?). Their creativity might actually be useful in this context,

where everything is so new.
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Breaking the mold

One of the pernicious myths that frustrates students and teachers alike is

that “the answers are all in the book”. If that were true, why would we

bother to teach mathematics?

So why not let students have some of the fun, and why not let them

know straight away that there are questions they can attack that we

don’t know the answers to?

These situations provide good opportunities to practice the

“Action–Consequences–Reflection” principle [W. C. Bauldry, 2020].
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Sunday’s image

Figure 9: Density of eigenvalues of all 15 by 15 skew-symmetric tridiagonal

Bohemians with population [1, 1 + i ] (there are 16384 of them). 29



Assessment

How did we assess our students? We had no exams, only projects;

interim reports were given to the class, and (for EYSC and RMC) student

peer-grades were incorporated (averaged with the grades given by the

instructor).

This course is not well-suited to a traditional exam.

Course learning outcomes included “programming ability,” generally

speaking. What we wanted the students to be able to do was to write

and debug small programs with mathematical content: loops, possibly

recursion, certainly conditionals; good programming practice like giving

variables good names was important. Reproducibility mattered.

One memorable exercise was to mix up the teams during an in-class

programming exercise, to teach them the value of documentation.

What we really wanted was the students to start getting comfortable

asking their own questions.
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Concluding Remarks

This course was designed with students’ learning needs in mind, and also

with student survey requests in mind (“more programming” and “more

student control of the curriculum” are frequent responses).

Response from students was very enthusiastic.

NJC is still teaching his version of the course; he would say the same.

This course is, however, hard to teach, taking considerable design and

execution effort; it is resource intensive. Whether it, or something like it,

will fit in your program is up to you to decide.

Thank You For Listening.
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