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This talk is based on the following papers

1 Eunice Chan & RMC, A New Kind of Companion Matrix (ELA 2017)
2 Eunice Chan & RMC, Minimal Height Companion Matrices for
Euclid Polynomials (Math. Comput. Sci. 2019)

3 Eunice Chan et al, Algebraic Linearizations (LAA 2019)
4 Eunice Chan, RMC, & Leili Rafiee Sevyeri, Generalized Standard
Triples (ELA 2021)

Contributions of many: Neil Calkin, Lalo Gonzalez-Vega, Don Knuth,
Piers Lawrence, Juana Sendra, Rafa Sendra, and Steven Thornton, are
gratefully acknowledged. I also thank Froilán Dopico for
exceptionally detailed and patient editorial work for that last paper!
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Mandelbrot polynomials and Matrices

The talk is also related to Mandelbrot polynomials and matrices.

1 Piers Lawrence & RMC, The Largest Root of the Mandelbrot
Polynomials (Jonfest proceedings, 2013)

2 Bini and Robol’s MPSolve paper (JCAM 2014) (version 1 was 2000,
Bini & Fiorentino)

3 Neil J Calkin, Eunice Chan, & RMC, Some Facts and Conjectures
about Mandelbrot Polynomials (Maple Transactions 2021)

4 Neil Calkin et al, A Fractal Eigenvector (American Math Monthly
2022)

Piers Lawrence had the fundamental idea which opened the door to
these results.

NB: There is also a strongly related paper from 2017 by Robol,
Vandebril, and Van Dooren.

3
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Bohemian matrices

Another related thread of work: Bohemian Matrices

1 cover image: London Mathematical Society Newsletter,
November 2020, page 16 (RMC, NJ Higham, & SE Thornton)

2 Upper H–berg and Toeplitz Bohemians (Chan et al, 2020, LAA)
3 What can we learn from Bohemian matrices? (RMC, 2021)
4 Skew-symmetric tridiagonal Bohemian matrices (RMC 2021
Maple Transactions)

5 Computational Discovery on Jupyter (chapter 4) (an OER by Neil
Calkin, Eunice Chan, and RMC 2022, and to be a SIAM book :)

4

https://en.wikipedia.org/wiki/Bohemian_matrices
https://www.lms.ac.uk/sites/lms.ac.uk/files/files/NLMS_491_for web.pdf
https://www.lms.ac.uk/sites/lms.ac.uk/files/files/NLMS_491_for web.pdf
https://doi.org/10.1016/j.laa.2020.03.037
https://doi.org/10.5206/mt.v1i1.14039
https://doi.org/10.5206/mt.v1i2.14360
https://computational-discovery-on-jupyter.github.io/Computational-Discovery-on-Jupyter/


Algebraic companions

Suppose we have local linearizations (Aa,Ba) for dimension n matrix
polynomial a(x), and (Ab,Bb) for b(x), with

Ea(z)(zBa − Aa)Fa(z) =diag(a(z), INa−n)
Eb(z)(zBb − Ab)Fb(z) =diag(b(z), INb−n) (1)

and we wish to construct a local linearization (Ac,Bc) for
c(x) = xa(x)b(x) + d.

Suppose that we do not wish to expand this out, because we are
afraid of making the conditioning worse.
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Theorem 1.7 in the GST paper

Let Ea(z) and Fa(z) be rational matrices such that if z ∈ Σa (ie the
region in which the local linearization of a is valid) then Ea(z) and
Fa(z) are invertible and Ea(z)(zBa − Aa)Fa(z) = diag(a(z), INa−n), and
likewise let Eb(z) and Fb(z) be rational matrices such that if z ∈ Σb
then Eb(z) and Fb(z) are invertible and
Eb(z)(zBb − Ab)Fb(z) = diag(b(z), INb−n).

Then the pencil zBc − Ac is a local linearization of
c(z) = za(z)b(z) + d for z ∈ Σa ∩Σb, where the matrices Bc and Ac are
given on the next slides:
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The constructed (block upper Hessenberg) linearization

Bc =

 Ba
In

Bb

 (2)

and

Ac =

 Aa 0Na,n −YadXb
−Xa 0n 0n,Nb
0Nb,Na −Yb Ab

 . (3)

Here Xa = [In, 0, . . . , 0]F−1a (z), Ya = E−1a (z)[In, 0, . . . , 0]T and likewise
XB = [In, 0, . . . , 0]F−1b (z), and Yb = E−1a (z)[In, 0, . . . , 0]T give the
elements of the (generalized) standard triples for a(z) and b(z).
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The start of the proof

Form

E1(z) =

Ea(z) In
Eb(z)

 (4)

and

F1(z) =

Fa(z) In
Fb(z)

 , (5)

and form E1(xBc − Ac)F1 to start. We will have to apply various block
permutations, and the key fact, which follows.
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Key point of the proof (for which we thank a referee)

[
In −a(z)

In

][
a(z) d
In −zb(z)

][
zb(z) In
In

]
=

[
0 d+ zab
In −zb(z)

][
zb(z) In
In

]

=

[
za(z)b(z) + d

In

]
.
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Why this might be interesting

This gives a whole different class of possible linearizations1. For
instance, consider a variation of Newton’s example polynomial,
namely p(x) = x3 − Tx− 5 = x(x−

√
T)(x+

√
T)− 5. Algebraic

linearization gives

A =


√
T 0 5

−1 0 0
0 −1 −

√
T

 (6)

as a companion matrix. Computing the eigenvalues of this matrix,
when T = 2 · 105, results in a relative error of 1.4 · 10−13 in the
smallest eigenvalue, whereas using the Frobenius companion forces
an error of about 10−9.

1The theory is actually in Gohberg, Lancaster, and Rodman, though!

10



Varying T

Figure 1: Relative error in smallest eigenvalue: Algebraic Linearization vs
Frobenius Linearization, as the parameter T varies in x3 − Tx− 5. Fits:
10−16 ·

√
T (blue, Algebraic), 10−17 · T3/2 (red, Frobenius).
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A bigger example

We created an n = 3, grade 5 example by choosing a grade 2 A and a
grade 2 B and a D and forming C = zAB+ D. We perturbed it in two
different ways, and compared the algebraic linearization (Frobenius
for A and B) to the ordinary (2nd) Frobenius linearization for the
explicitly expanded C.
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Preliminary results

Figure 2: Pseudospectra of two different kinds of linearizations for our test
equation which is expressed in the monomial basis. The linearization
constructions used are algebraic linearization (left) and Frobenius
linearization (right). [Graph courtesy Eunice Y. S. Chan.]
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Unresolved questions

We think that the potentially improved numerical stability arises
because the height of the new matrices can be lower.

Height(A) := ∥vec(A)∥∞ is a matrix norm, but not a submultiplicative
one. For instance, consider[

2 2
2 2

]
=

[
1 1
1 1

][
1 1
1 1

]
. (7)

The height of AB is not necessarily less than the height of A times the
height of B.

Also, the height of a matrix can be forced to 1 by scaling, so we are
really worrying about the smallest nonzero elements after such a
scaling.
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Minimal height companions/linearizations

If we are given a recursive construction, this idea makes sense. But if
we are given a fully formed matrix polynomial P(z), can we construct
factors in a reasonable way? And how far can this be taken?

An alternative question: if the entries of the (matrix) polynomial
coefficients are integers, what is the minimal height linearization?
And how do we compute it? This looks like a discrete optimization
problem. [I have asked some of my friends for advice but so far they
have all looked rather helplessly at me.]

NB: As exemplified by the Mandelbrot matrices, the minimal height
may be exponentially smaller than the size of the coefficients of the
original polynomial.
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Thank you!

Happy to take questions!

This work was partially supported by NSERC grant RGPIN-2020-06438,
and partially supported by the grant PID2020-113192GB-I00
(Mathematical Visualization: Foundations, Algorithms and
Applications) from the Spanish MICINN.
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