
Blendstrings: An environment

for computing with smooth functions

Robert M. Corless

17 August 2023

Maple Transactions

1

Maple Transactions

Maple Transactions

an open access journal with no page charges

mapletransactions.org

2

https://mapletransactions.org/index.php/maple

Remembering Peter Baddoo

Log lightning computation of capacity and Green’s functions [Link] by

Trefethen & Baddoo

Peter’s video abstract for that Maple Transactions paper has set the bar

very high for all subsequent video abstracts. See also the “Interview with

the authors” in the same issue.

3

https://mapletransactions.org/index.php/maple/article/view/14124

What this talk is about

These slides (which include links) are available at

https://rcorless.github.io/

1. What’s a “blend?” (a two-point Hermite interpolational polynomial,

typically of high order)

2. What’s a “blendstring?” (a smooth piecewise polynomial where the

pieces are blends that share derivative information)

3. Blends can be evaluated in linear time

4. Blends are componentwise backward stable

5. Blends have decent Lebesgue constants

6. Blendstrings can be integrated and differentiated accurately

7. There are companion matrix pencils for blends (which I outline on

the YouTube video version of this talk, but I won’t talk about them

today)

4

https://rcorless.github.io/

Some of my papers related to this topic

0. Piers Lawrence & RMC, “Numerical stability of barycentric Hermite

rootfinding” [Link to ACM Digital Library version] SNC 2011

1. RMC & Erik Postma, “Blends in Maple” [arXiv Link] Maple

Conference 2020

2. Chris Brimacombe, RMC, & Mair Zamir, “Computation and

applications of Mathieu functions: A historical perspective” SIAM

Review 2021 [Open Access Link, courtesy MZ]

3. RMC, “Sobre la iteración cúbica inversa”, Gaceta de la Real

Sociedad Matematica Española, 2021 [arXiV link] English version

4. RMC, “Blends have decent numerical properties” [Link] Maple

Transactions 2023

5. Chris Brimacombe, RMC, & Mair Zamir, “Elliptic cross sections in

blood flow regulation”Mathematics, Science, & Industry July 2023

[Open Access Link, courtesy MZ]

5

https://dl.acm.org/doi/10.1145/2331684.2331706
https://arxiv.org/abs/2007.05041
https://arxiv.org/abs/2007.05041
https://epubs.siam.org/doi/abs/10.1137/20M135786X
https://arxiv.org/abs/2007.06571
https://doi.org/10.5206/mt.v3i1.15890
https://doi.org/10.5206/mt.v3i1.15890
https://www.aimspress.com/article/doi/10.3934/math.20231176

I wrote new code in Maple for this

I wrote an Hermite–Obreshkov ODE solver in Maple in order to

approximate both Mathieu and modified Mathieu functions and provide a

spectrally convergent expansion for the flow of blood in an elliptic

cross-section blood vessel:

v(ξ,η) =
∑
m≥0

b2mce2m(η)Ce2m(ξ) (1)

and thus solve the original model equation. The code I wrote uses

blendstrings to approximate the Mathieu functions ce2m(η) and the

modified Mathieu functions Ce2m(ξ) to arbitrary precision.

6

But why did I write my own special-purpose IVP solver?

• The Mathieu equations have double eigenvalues. All the codes that I

knew of could not handle the double eigenvalue problem explicitly.

• Mathieu functions are useful: spectral convergence so only six terms

needed for double precision accuracy

• I wanted an independent method whose solutions could be verified a

posteriori

• Purely imaginary q = iρωd2/4 is needed [2.]

• The case of “near circularity” is actually very hard and one needs

high precision.

7

Could there be other uses for blendstrings?

• Efficient high-accuracy solution of IVP (or BVP) for D-finite ODE

• Solving delay differential equations by the method of steps1.

• Ned Nedialkov and John Pryce have already implemented a similar

method in a quite general way, for solving DAE. Their code DAETS

works well. Perhaps some experimental features of this Maple code

could influence future development of DAETS.

http://www.cas.mcmaster.ca/~nedialk/daets/

1I haven’t tried this yet but I will soon. I need to implement discontinuity handling

first.

8

http://www.cas.mcmaster.ca/~nedialk/daets/

Blends and Blendstrings

To implement this code, I first wrote (with Erik Postma) an efficient and

numerically stable evaluator for what we call “blends” (arbitrary degree

two-point Hermite interpolational polynomials), together with routines

for manipulating them: integration, differentiation, rootfinding, addition,

multiplication, etc. [1]

A “string of blends” is a particular kind of piecewise interpolational

polynomial, that has some interesting properties, especially in the context

of ODE solving.

Blendstrings are analogous to cubic splines2, but much smoother.

Approximations on each subinterval are grade3 m + n + 1 (usually

m = n) and are m-times differentiable at the knots.

2Splines are not blends because the derivatives at the knots are approximations, but

pure Hermite cubic interpolation with exact derivatives f ′(xi) at the knots is a blend.
3degree at most

9

Blends

Suppose that we know some Taylor coefficients of a function at two

distinct points, say z = a and z = b. Then put z = a+ s(b − a) and the

interval 0 ≤ s ≤ 1 determines a line segment in the z-plane.

Then (Hermite, Cours d’Analyse 1873)

H(s) =
m∑
j=0

pj

m−j∑
k=0

(
n + k

k

)
sk+j (1− s)n+1

+
n∑

j=0

(−1)j qj
n−j∑
k=0

(
m + k

k

)
sm+1 (1− s)k+j (2)

has H(j)(0)/j! = pj for 0 ≤ j ≤ m and H(j)(1)/j! = qj for 0 ≤ j ≤ n.

Here differentiation is wrt s so one has to be careful about bookkeeping.

This is a “two-point Hermite interpolational polynomial,” or “blend” for

short, because it blends the Taylor series at either end together to give an

approximant on the interval between.

10

Convergence

Figure 1: Convergence of grade 2m + 1 blends to 1/Γ(s). Blue line is 2−8m.

Computations done in 100 digits, and took a second or two in total. One can

find the theory of convergence of things like these in Nick’s book

Approximation Theory and Approximation Practice. As usual convergence

depends on how near singularities are to the contour. For entire functions

convergence is excellent.

11

Double Horner

When evaluating a polynomial p(x) = c0 + c1x + c2x
2 + · · ·+ cmx

m one

usually writes it in Horner form:

p(x) = c0 + x(c1 + x(c2 + · · ·+ xcm) · · ·). A similar thing can be done

here for the double sum. The key step is the recurrence for the half-sums

which involve terms ak analogous to powers xk : a0 = 1 and

ak ← (n + k) · σ · ak−1/k (3)

which not only computes powers of σ (which is either s or 1− s

depending on which double sum we’re doing) but breaks the binomial

coefficients down using their recurrence relation. See [1].

We also need partial sums of these, and to incorporate the coefficients,

12

Numerical stability

Blends are ridiculously good numerically. The presence of those

potentially large binomial coefficients suggests the opposite, but the

doubly-recursive Horner implementation has been used successfully for

degrees up to about 1000, even for very hard-to-approximate functions.

That is, the ability of a polynomial to approximate whatever it is usually

fails first, before the blend has any numerical instability.

There’s a couple of reasons for that success.

13

Backward stability result

• double Horner gives the exact value of a blend with Taylor

coefficients pj(1 + θj) and qj(1 + ψj), where each |θj | ≤ γ3M+N and

|ψj | ≤ γ3M+N , with M = max(m,n) and N = min(m,n).

• proof uses the nonnegativity of sa(1− s)b on 0 ≤ s ≤ 1

Zero coefficients pj = 0 and qj = 0 are not disturbed. This is a very

strong backward stability result (cf. those of Alicja Smoktunowicz for the

Clenshaw–Curtis algorithm).

Here γn = nu/(1− nu) = nu + O(u2) where u is the unit roundoff. For

double precision, u ≈ 10−16. See e.g. Higham’s Accuracy and Stability of

Numerical Algorithms. This proof and all its details are in the Maple

Transactions paper [4].

14

A grade 1000 example

Figure 2: The backward error for a random example, computed in double

precision. The Taylor coefficients pj and qj were pseudorandomly generated;

m = 368 and n = 999−m = 631 so the grade is m + n + 1 = 1000. The red

line is the theoretical bound γ3M+N , the blue dashed line is a crude random

walk model of the error γ√3M+N , and the black dots are the actual backward

error computed by the Oettli–Prager theorem.

15

Lebesgue constants on −1 ≤ x ≤ 1

Figure 3: The Lebesgue function of balanced blends on [−1,1] grows like

2
√

m/π where the grade is 2m+ 1. We plot the function for m = 1, 2, 3, 5, 8,

13, 21, 34, 55, 89, and 144. Lebesgue constants must be unbounded on [−1,1];

optimal is 2 ln(2m + 1)/π + O(1), like Lagrange interpolation on Chebyshev

nodes. But
√
m is pretty decent. For m = 144 this is 13.5 vs 3.6. See also

https://www.chebfun.org/examples/approx/LebesgueConst.html.

16

https://www.chebfun.org/examples/approx/LebesgueConst.html

On 0 ≤ s ≤ 1 the Lebesgue constant is 2

The Lebesgue function—which the Lebesgue constant is a bound

for—gives a bound for the condition number. For blends the Lebesgue

function is exactly the polynomial you get with all series coefficients 1 at

the left and all coefficients (−1)j on the right:

Lm,n(s) =
m∑
j=0

m−j∑
k=0

(
n + k

k

)
sk+j (1− s)n+1

+
n∑

j=0

n−j∑
k=0

(
m + k

k

)
sm+1 (1− s)k+j (4)

We can show that on 0 ≤ s ≤ 1, Lm,m(s) < 2 and indeed

Lm,m(s) ≤ Lm,m(1/2) = 2− 2−2m+1
(
2m+2
m+1

)
∼ 2− 2/

√
πm + O(1/m3/2).

Bernstein polynomial bases ϕmj =
(
m
j

)
s j(1− s)m−j are better, with

Lebesgue constant 1. But 2 is good.

17

The proof is very pretty.

One first proves by a contour integral that

Lm,m(s)− Lm−1,m−1(s) =
1

m + 1

(
2m

m

)
sm(1− s)m . (5)

Then the Lebesgue function can be written

Lm,m(s) =
m∑
j=0

1

j + 1

(
2j

j

)
s j(1− s)j (6)

and this is, with x = s(1− s), a truncation of the ordinary generating

function for Catalan numbers. It is maximal when s = 1/2 and

bounded above by 2.

Then we translate this result to the interval −1 ≤ t ≤ 1 for “fair”

comparison to other bases. Details in the Maple Transactions paper [4].

18

Unbalanced blends are bad, though

Figure 4: The Lebesgue function of unbalanced blends on [−1,1] grows

exponentially. Just as bad as equally-spaced interpolation nodes, really.

19

Making it jump

If we put the series at the left to be 1,0,0, . . . and the series at the right

to be −1,0,0, . . ., no analytic function can do this. Truncating, say with

m = 368 and n = 631 (so the grade m + n + 1 = 1000) we get a

polynomial, which plots below.

Figure 5: Look how smooth the plot is. No “Gibbs phenomenon” at all!
20

Blendstrings

A string of blends, or blendstring, is a set of the form

B := {Lk}Mk=0 (7)

where each Lk is a list of the form

Lk := [αk ,Ck,0,Ck,1, . . . ,Ck,mk
] (8)

intended to represent the known Taylor coefficients Ck,j at the point

z = αk .

Two blendstrings are compatible if they have the same knots in the same

order and with the same degrees mk at each knot. Then they can be

added together, etc. If A and B are compatible blendstrings, then A op

B can be a blendstring, where ”op” is any of +, −, *, / (if B is not

zero), or even .̂

21

A possible blendstring

Figure 6: The knots αk are plotted with solid circles. Taylor coefficients are

known at those knots. On the segment between any two knots, Hermite’s

formula gives a “blend” approximating the underlying function.

22

Quadrature

There is a very interesting (exact!) quadrature formula for a blend, which

allows indefinite integration of blendstrings. Obreshkov (1940) had a

version of it written with ratios of binomial coefficients4.∫ 1

s=0

H(s) ds =
(m + 1)!

(m + n + 2)!

m∑
j=0

(n +m − j + 1)!

(m − j)!(j + 1)
pj

+
(n + 1)!

(m + n + 2)!

n∑
j=0

(−1)j(n +m − j + 1)!

(n − j)!(j + 1)
qj (9)

There is a five-line Maple proof of this formula.

[MapleProofHermiteQuadrature.mw] Or you can use contour integration.

4It might have been a reinvention. Hermite must have known it, surely? Or Darboux

or Gauss.

23

Indefinite integration?

The definite integral (9) from the last slide allows one to (trivially)

compute the Taylor coefficients for I (s) =
∫ s

0
H(σ) dσ at s = 1: the

zeroth order coefficient is now known (it’s just the definite integral∫ 1

0
H(σ) dσ) and all the derivatives are simply related to the (known)

derivatives of H(s) at s = 1:

I ′(s) = H(s) =
m∑
j=0

qj(s − 1)j

I (s) = I (1) +
m∑
j=0

qj
j + 1

(s − 1)j+1 . (10)

Likewise, I (0) = 0 is known, and all its derivatives at s = 0 are related in

the same way.

Therefore, we can immediately find a blend for I (s) on 0 ≤ s ≤ 1.

By propagating information from the previous subinterval, this gives us a

blendstring for the integral of the function being approximated by the

blendstring. 24

Computational Version (new for this talk)

Put c0 = (m + 1)/(m + n + 2) and d0 = (n + 1)/(m + n + 2) and define

cj =
j(m − j + 1)

(j + 1)(m + n + 2− j)
cj−1 for 1 ≤ j ≤ m (11)

dj = −
j(n − j + 1)

(j + 1)(m + n + 2− j)
dj−1 for 1 ≤ j ≤ n . (12)

(Notice the sign alternation in the djs.) Then

I (1) =
m∑
j=0

cjpj +
n∑

j=0

djqj . (13)

25

Continued

If m = n then |dj | = cj and the formula becomes

I (1) =
m∑
j=0

cj
(
pj + (−1)jqj

)
(14)

=
1

2
(p0 + q0) +

m

4(2m + 1)
(p1 − q1) + · · ·+ cm (pm + (−1)mqm) .

The final coefficient cm = 1/((m + 1)
(
2m+2
m+1

)
) is asymptotic to

2−2m−2
√
π/m. This method is beautifully stable numerically:

componentwise backward error using IEEE 854 standard floats is

bounded by γm+n+2.

It is not very accurate if m and n are greatly different, but if m ≈ n it’s

wonderfully accurate when the underlying function has no nearby

singularities.

26

Differentiation

The numerical routine Erik Postma and I wrote to evaluate blends also

has the ability to evaluate arbitrary derivatives, by what I call

“semi-automatic differentiation”.

Figure 7: Error in 2nd derivative with m = 7 at either end

27

In summary

With blendstrings we can

• Approximate smooth functions on an interval in a perfectly stable,

decently conditioned, and a (nearly?) spectrally efficient manner.

• Combine functions very efficiently: f ± g , f · g , f g , and if g ̸= 0 we

can find f /g .

• Differentiate and integrate the functions, because these operations

are closed on sets of compatible blendstrings.

• Find zeros.

• Solve differential equations.

Therefore, as one can with Chebfun and Approxfun, one can do a kind of

symbolic computation with smooth functions, sometimes much more

rapidly than one can do exact computation.

28

Where next?

I would like to add Laurent series and Puiseux series, in order to explore

the singularity detection and location facilities afforded by these

interpolational polynomials.

I want to add two-sided blendstrings, so as to allow for the possibility of

jump discontinuities at the knots.

I would like to add approximate composition (and decomposition) to the

things one can do with blendstrings. Seems complicated, but interesting.

[Link] Some recent work of Erik Postma

I promised to try to solve delay DE with blendstrings. That should be a

simple job5. (Once we can handle discontinuities.)

Rootfinding is important. What’s the best method to find the roots of a

blendstring? (J.P. Boyd & L.N. Trefethen subdivision?)

5“There’s no such thing as a simple job.”—Tim Daly

29

https://doi.org/10.5206/mt.v2i1.14469

Where next, for Nick?

I wish him a happy and productive retirement!

30

Thank you for listening.

This work supported by NSERC, by the Spanish MICINN, and by the

Isaac Newton Institute in Cambridge.

I thank Michael Monagan for comments and Ned Nedialkov for the same

and for sending me a copy of Obreshkov’s 1940 paper. I also thank Erik

Postma and my other co-authors, and especially I thank John C. Butcher

for teaching me the contour integral technique for interpolation, by which

I (re)derived all these formulae.

31

