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Announcement: Maple Transactions

Maple Transactions
an open access journal with no page charges

mapletransactions.org

We welcome expositions on topics of interest to the Maple
community, including in computer-assisted research in mathematics,
education, and applications. Student papers especially welcome.
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https://mapletransactions.org/index.php/maple


Example papers

For example, see

Peter J. Baddoo and Lloyd N. Trefethen. Log-lightning computation of
capacity and Green’s function. Maple Transactions Volume 1, Issue 1,
Article 14124 (July 2021). https://doi.org/10.5206/mt.v1i1.14124

Richard P. Brent. Some Instructive Mathematical Errors. Maple
Transactions Volume 1, Issue 1, Article 14069 (July 2021).
https://doi.org/10.5206/mt.v1i1.14069

There is also a transcript of an interview with these authors,
conducted by Annie Cuyt.
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Another announcement
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Suitable both for complete novices and for experts in programming and mathematics, this charming 
book will inform, entertain, and puzzle readers for hours. I hesitate to call it a “textbook” because it 
actually makes both mathematics and programming a lot of fun! 
    — Nilima Nigam, Simon Fraser University

Interesting mathematics can be discovered through computational experiments, as is convincingly 
demonstrated by this book. It gently guides the reader through material not found in standard 
courses, making excellent use of graphics and teaching basic programming along the way.

                                                                                        — Nicholas J. Higham, University of Manchester

This book uses Python to teach mathematics not found in the standard curriculum, so students learn a 
popular programming language as well as some interesting mathematics. Videos, images, programs, 

programming activities, pencil-and-paper activities, and associated Jupyter Notebooks accompany the 
text, and readers are encouraged to interact with and extend the material as well as contribute their own 
notebooks. Indeed, some of the material was created/discovered/invented/published first by the authors’ 
students.

Useful pedagogical features include:
• using an active learning approach with topics not typically found in a standard math curriculum
• introducing concepts using programming, not proof, with the goal of preparing readers for the need  

for proof 
• accompanying all activities with a full discussion

Computational Discovery on Jupyter is for upper-level high school and lower-level college students. Graduate 
students in mathematics will also find it of interest.

Neil J. Calkin is a professor in the School of Mathematical and Statistical Sciences at 
Clemson University. He cofounded the Electronic Journal of Combinatorics with 
Herbert S. Wilf in 1994.

Eunice Y. S. Chan is an assistant professor in the School of Medicine at The Chinese 
University of Hong Kong Shenzhen, China. She was a postdoctoral fellow at the Centre for 
Medical Evidence, Decision Integrity and Clinical Impact (MEDICI Centre), Department of 
Anesthesia and Perioperative Medicine, Schulich School of Medicine and Dentistry 
at Western University in London, Ontario. 

Robert M. Corless is Emeritus Distinguished University Professor at Western University, 
a member of the Rotman Institute of Philosophy, former scientific director of The Ontario 
Research Center for Computer Algebra, and an adjunct professor at the Cheriton School of 
Computer Science, the University of Waterloo. He is the editor-in-chief of Maple Transactions.
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Figure 1: A new book from SIAM: Calkin, Chan, & Corless, “Computational
Discovery on Jupyter”, hopefully available November
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Bohemian Matrix Geometry

Details for parts of the talk can be found at
https://arxiv.org/abs/2202.07769
The Maple Workbook that contains the source code partially
implementing the Schmidt–Spitzer theorem can be found, together
with all the images from our paper and the slides from this talk, at
https:
//github.com/rcorless/Bohemian-Matrix-Geometry
Please download those images and look at them on your own
devices. That gives higher resolution than this projection does.

(This is “Screen-sharing for in-person lectures” :)
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Rhapsodizing about Bohemian Matrices

Figure 2: A cartoon by mathematician John de Pillis (UC Riverside), which
appeared in Nick Higham’s column in SIAM News
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https://sinews.siam.org/Details-Page/rhapsodizing-about-bohemian-matrices
https://sinews.siam.org/Details-Page/rhapsodizing-about-bohemian-matrices


Bohemian Matrices

A family of matrices is called “Bohemian” if all entries are all from a
single finite population P. The name comes from BOunded HEight
Matrix of Integers. See bohemianmatrices.com for instances.

See also the [link] London Mathematical Society Newsletter,
November 2020, page 16.

Such matrices have been studied for quite a long time (e.g. by Olga
Taussky–Todd), though the name “Bohemian” only dates to 2015. See
also the Wikipedia entry at
https://en.wikipedia.org/wiki/Bohemian_matrices.
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http://www.bohemianmatrices.com/
https://www.lms.ac.uk/sites/lms.ac.uk/files/files/NLMS_491_for web.pdf
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Earlier results by Terence Tao and Van Vu

Figure 3: The distribution of eigenvalues of a family of matrices whose
entries are drawn from a fixed finite population is asymptotically uniform in
the scaled unit disk. [Terence Tao and Van Vu, 2006 & 2017]. This is visible
already by dimension m = 5: the holes fill in as m increases, and the real
eigenvalues become negligible.
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Why we’re interested

• Allows to study common properties of discrete structured
matrices

• investigate extreme possibilities by exhaustive computation
• New look at some old problems (e.g. Hadamard conjecture).
Instead of looking for matrices with largest determinant, look for
matrices with largest coefficient in the characteristic
polynomial? [link] Upper Hessenberg and Toeplitz Bohemians

• Generate new ideas and new conjectures
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https://www.sciencedirect.com/science/article/pii/S0024379520301713


Why we were interested

Our original motivation was simply the construction of test
problems for eigenvalue solvers; Steven Thornton has by now solved
several trillion eigenvalue problems, and uncovered low-dimension
instances (10 by 10 matrices with complex entries, 20 by 20 matrices
with real entries) for which 2018 Matlab’s eig routine failed to
converge. [Reported to the Mathworks, long since fixed.]
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Other uses

Nick Higham has used Bohemian matrices as a class to optimize
over to look for improved lower bounds on such things as the growth
factor in matrix factoring; Laureano Gonzalez-Vega has looked at
correlation matrices. [link] David R. Nelson (Harvard) uses ideas like
these to study non-Hermitian quantum mechanics. (Thanks to Nick
Trefethen for making this connection). Matthew Lettington (Cardiff) is
interested in these ideas for use with magic squares and related
topics. Hence this visit!
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https://journals.aps.org/pre/abstract/10.1103/PhysRevE.100.052315
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.100.052315


Structured matrices

We have used this idea to understand some things about simple
matrix structures, such as [link] Skew-symmetric tridiagonal matrices
and [link] Upper Hessenberg and Toeplitz Bohemians.

We will talk about some of these results today.
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https://doi.org/10.5206/mt.v1i2.14360
https://doi.org/10.1016/j.laa.2020.03.037


Differences from more classical problems

If you are used to doing mathematical analysis, then you are typically
interested in

• What happens as the dimension m goes to infinity
• What the asymptotic measures or probabilities are
• Generic answers.

But if the dimension m is only, say, 5 or 6, then there are likely to be
noticeable effects of small size; and analytical tools are likely to be
most helpful after experiments have generated conjectures.
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Skew-symmetric tridiagonal Bohemian matrices

Here is a 7× 7 example of a complex skew-symmetric tridiagonal
Bohemian matrix with population [P]. If P has #P elements, then the
number of such matrices is #P6.

0 u1 0 0 0 0 0
−u1 0 u2 0 0 0 0
0 −u2 0 u3 0 0 0
0 0 −u3 0 u4 0 0
0 0 0 −u4 0 u5 0
0 0 0 0 −u5 0 u6
0 0 0 0 0 −u6 0


(1)
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A picture

Figure 4: Density of eigenvalues of all 414 = 268,435,456 fifteen by fifteen
skew-symmetric tridiagonal matrices with population P = [±1,±i] using
i =

√
−1. Note the “rose” in the middle and its symmetries. Computed in

Maple (10 seconds).
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Density of eigenvalues in C

Figure 5: Density plot of eigenvalues of all 230 = 1,073,741,824
skew-symmetric tridiagonal matrices of dimension 31 with population {1, i}
with i =

√
−1. Hotter colours correspond to higher density. Picture by Aaron

Asner.
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For this class, polynomials are almost useful

Figure 6 was computed using eigenvalues of only 214 = 16,384
matrices (thus explaining the mere 10 seconds taken), with P = [1, i]
not the 414 > 2.68× 108 matrices with P = [±1,±i]. I might have done
even better by using just the 8,146 unique characteristic polynomials
of this family. The characteristic polynomials satisfy the recurrence
relation

pk+1 = λpk + u2npk−1 (2)

and p0 = 1, p1 = λ. So there is no need for −1 or −i.

Even so, I used Maple’s Eigenvalues (NAG Library, LAPACK,
comparable in speed to Matlab), because degree fifteen polynomials
can still be ill-conditioned. [I could have used MPSolve by Bini and
Robol.]
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The shape is not circular!

The Tao and Vu result does not apply to this class of matrices.
Indeed the eigenvalues are uniformly bounded in |λ| ≤ 2 by
Gerschgorin; but why is the shape so angular? And is that edge
better modelled by a fractal?

A referee brought to our attention the 2013 Operators and Matrices
paper by Chandler-Wilde et al who explained this shape using
so-called Kippenhahn polynomials; we explained it by an older
theorem known as the Bendixon–Bromwitch–Hirsch theorem, which
uses the spectra of the Hermitian and skew-Hermitian parts of a
matrix to give a (sometimes tighter than Gerschgorin) bound. But the
apparently fractal edge is still not well understood.

See the paper Bohemian Matrix Geometry.
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Our proof

The Bendixon–Bromwitch–Hirsch theorem: Write the matrix A as a
sum of its Hermitian and skew-Hermitian parts:

A =
1
2 (A+ A∗) + i 12i (A− A∗)

= H+ iS . (3)

Both H and S are Hermitian so their eigenvalues µm ≤ µm−1 ≤ . . . µ1
and νm ≤ · · · ≤ ν1 are real.

The BBH theorem says that the eigenvalues of A lie inside the box
µm ≤ ℜ(λ) ≤ µ1, νm ≤ ℑ(λ) ≤ ν1.

To get our needed diamond, one has to rotate by 90◦; the details are
important but left as an activity for people bored by the rest of this
talk! Remember, the population of these skew-symmetric matrices is
just {1, i}; try working with population ±1± i instead to start with.
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Fibonacci polynomials

The maximum characteristic height occurs when all un = 1 or (same
height) when all un = i. Call that height Hm. The first few
characteristic heights are

1, 1, 1, 2, 3, 4, 6, 10, 15, 21, 35, 56, 84, 126, 210, 330 (4)

and H15 = 330. We have Fm+1/(m+ 1) < Hm < Fm+1 where Fn is the
nth Fibonacci number.

These maximal height polynomials are known as Fibonacci
polynomials because pm+1 = λpm + pm−1.
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Condition Number for polynomials

If

p(z) =
m∑
k=0

ckϕk(z) (5)

has its coefficients changed to ck(1+ δk) then

|∆p(z)| =
∣∣∣∣∣
m∑
k=0

ckδkϕk(z)
∣∣∣∣∣

≤

(∑
k=0

|ck||ϕk(z)|
)

max
0≤k≤m

|δk| . (6)

This is just the triangle inequality (or, if you prefer, a special case of
Hölder’s inequality). The term in brackets, which we denote B(p), is
called the condition number for evaluation of the polynomial p(z).
Usually the monomial basis ϕj(z) = zj is used.
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Condition number of Fibonacci polynomials

The coefficients ck of Fibonacci polynomials pm(λ) are all positive:
thus the condition number is

B(pm)(λ) =
m∑
k=0

ck|λ|k . (7)

Therefore the maximum condition number of Fibonacci polynomials
on |λ| ≤ 2 (which contains all eigenvalues) occurs at the boundary
|λ| = 2.

Solving pm+1(2) = 2pm(2) + pm−1(2) needs r2 = 2r+ 1 or
r2− 2r+ 1 = 2 which has roots r = 1±

√
2. Thus the condition number

of Fibonacci polynomials on this interval grows like (1+
√
2)m.

For m = 15 this is about 5 · 105 so double precision would have been
enough for these polynomials.
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Use Eigenvalues

But the condition number of a random dimension m eigenvalue
problem is only O(m2), so about 225 for m = 15, so even for such a
small dimension eigenvalues should be better. For this real
skew-symmetric matrix the eigenvalue condition numbers are all 1,
so it’s even better.
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Polynomial condition can grow exponentially

To emphasize: the polynomial evaluation (and therefore rootfinding)
condition numbers can grow exponentially with the dimension of the
matrix, whereas we expect the eigenvalue condition number to grow
only quadratically with the dimension.
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Symmetries

Since the coefficients are real, eigenvalues must occur in conjugate
pairs. One can also deduce that p2k+1(λ) is odd and p2k(λ) is even.
Therefore if λ∗ is an eigenvalue, so is −λ∗. These are the only
symmetries. Let’s look at that graph again.
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A picture

Figure 6: Density of eigenvalues of all 414 = 268,435,456 fifteen by fifteen
skew-symmetric tridiagonal matrices with population P = [±1,±i]. Note the
“rose” in the middle and its symmetries. Computed in Maple (10 seconds). 25



Zooming in

Figure 7: Zooming in on the rosette near zero: counting, we see a 15-fold
symmetry in the outer ring, a 13-fold symmetry in the next smaller ring, then
an 11-fold symmetry in the next smaller ring. These symmetries are spurious
and therefore these eigenvalues are rounding errors.
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Nilpotent matrices

The reason for the rosette is multiple eigenvalues at 0. Indeed there
are nilpotent matrices at dimension m = 2k − 1, (and only at these
dimensions). I found a recursive formula for a family1 of such
nilpotents: if s = [u1,u2, . . . ,um−1] is the superdiagonal of a nilpotent
matrix of dimension m = 2k − 1, then both [s, 1, i, rev(s)] and
[s, i, 1, rev(s)] are superdiagonals of nilpotent matrices of dimension
m = 2k+1 − 1. Here “rev” means reverse the order of the list.

Conjecture, experimentally checked to m = 31: these are the only
nilpotent skew-symmetric tridiagonal Bohemian matrices with
population {1, i}. [This ought to be easily provable, but I failed on my
first try, then got distracted.]

1I made a terrible pun about this family, too. Don’t say you weren’t warned.
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Jordan structure

It turns out that there is only one Jordan block for these nilpotent
matrices, and the matrix Q transforming these Bohemian matrices to
Jordan form AQ = QJ is such that it resembles a Sierpinski gasket (it
is also Bohemian, as is Q−1, so these matrices have rhapsody). This
“Sierpinski”-ness is a kind of coincidence, considering what I will talk
about next.
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One matrix Q when m = 127

Figure 8: The structure of Q for one nilpotent A with AQ = QJ, for dimension
m = 127. The nonzero entries of Q, pictured here simply as black squares,
are ±1 and ±i.
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A cleaner image

Figure 9: Computing and solving the characteristic polynomials removes the
spurious rosette. It takes five times as long, in Maple, however.
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See the Maple Transactions paper

For more details, see
https://doi.org/10.5206/mt.v1i2.14360. I’d like to move
on to another class, which also mixes eigenvalues and polynomial
computation.
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Nonlinear Sierpinski

Figure 10: upper Hessenberg Toeplitz, −1 subdiagonal, zero diagonal,
population cube roots of unity, dimension m = 13, all 531,441 matrices,
zoomed in on an edge.
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Another population

Figure 11: Population {−1,i,1}, dimension m = 15, eigenvalues of all
4,782,969 UHTZD matrices. −3 ≤ x ≤ 3, −3 ≤ y ≤ 3
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Left edge

Figure 12: Population {−1,i,1}, dimension m = 15, eigenvalues of all
4,782,969 UHTZD matrices. Zoomed in a bit to −3 ≤ x ≤ −2, −1/2 ≤ y ≤ 1/2
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Toeplitz matrix fun

Banded Toeplitz matrices are surprisingly “easy” to understand now
(after work of Toeplitz, Szegő, Kac, Widom, Wiener, Schmidt & Spitzer,
Böttcher et al., and many others).

a0 a1 a2 a3 0 0
a−1 a0 a1 a2 a3 0
a−2 a−1 a0 a1 a2 a3
0 a−2 a−1 a0 a1 a2
0 0 a−2 a−1 a0 a1
0 0 0 a−2 a−1 a0


This matrix has “symbol” a−2

z2 + a−1
z + a0 + a1z+ a2z2 + a3z3. In general

(for infinite dimension) it’s a Laurent series; for banded matrices, a
Laurent polynomial.
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Bounds and patterns II

Theorem: (Toeplitz) The eigenvalues of an infinite-dimensional
Toeplitz operator are related to∗ the image of the unit circle under
the symbol: a(eiθ).
∗ Ok so I am not telling the whole story here. Which infinite matrix?
And what about winding numbers? And for which class of symbols
(functions) is this true for?

Important Note: The eigenvalues of finite-dimensional truncations
of Toeplitz matrices do not necessarily converge to the spectrum of
the corresponding infinite-dimensional Toeplitz operators (but their
pseudospectra [link] do).

Another Theorem (Schmidt & Spitzer 1963): The eigenvalues of
finite-dimensional banded Toeplitz matrices converge to
semialgebraic curves (that can be determined by a simple algebraic
computation) defined by the symbol.

36

http://www.cs.ox.ac.uk/pseudospectra/


Our theorem, needed to explain the Sierpinski structure

The Schmidt–Spitzer curves (and therefore, we believe, eigenvalues)
of finite-dimensional upper Hessenberg Toeplitz matrices converge
to analogous computable curves defined by roots of convergent
series.

This convergence allows us to explain the Sierpinski-like fractal
structures in the Bohemian eigenvalue density plots.
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Eigenvalues of One Toeplitz matrix

Figure 13: Eigenvalues of a single dimension m = 6 upper Hessenberg
zero-diagonal Toeplitz matrix with entries from {−1,0,1}. The black curve is
the image of the unit circle under the symbol; the dotted blue curve is the
Schmidt–Spitzer curve for the infinite-dimensional banded Toeplitz matrix.
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The Schmidt–Spitzer semialgebraic curves

The curves are defined by equal-magnitude values of the so-called
“symbol”: a(z) = a(eiθz) = λ. These are Laurent polynomials, so
finding the zeros is just univariate polynomial rootfinding of
a(z)− a(eiθz) = 0, given θ. However, λ is in the curve if and only if
the two equal-magnitude roots are the qth and q+ 1st smallest
magnitude roots, where q is the order of the pole in the Laurent
polynomial (here q = 1). Combinatorics and complex analysis both!

Look at ToeplitzExperiments.maple
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What did we prove?

For upper Hessenberg matrices, a Laurent polynomial symbol

a(z) = − 1z + a0 + a1z+ · · ·+ amzm

is not very different to a (finite pole) Laurent series because the
similarity transform by the diagonal matrix D = diag(1,ρ,ρ2, . . .)
shows that the series

a(z) = −ρ

z + a0 + a1
z
ρ
+ · · ·+ am

zm
ρm

+ · · ·

converges absolutely and uniformly for |z| < ρ (where |ak| ≤ B
because Bohemian and so geometric). Everything follows from
classical theorems afterwards: the equal-magnitude curves converge.
In practice, they converge rapidly for the examples we tried.
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What does the theorem explain?

Using that theorem, we can look at upper Hessenberg Toeplitz
Bohemian matrices with, say, a population with three elements. Then
increasing the dimension by 1 gives us one new term in the
symbol—am—which can have one of three values; this gives three
new matrices and thus three new eigenvalues for each old
eigenvalue, and moreover these eigenvalues have to lie close to the
semialgebraic curve from before. This explains the “Sierpinski
gasket” look of these images.

This is the first such explanation of the appearance of a fractal in a
Bohemian context.
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Unsolved problems

Figure 14: (Stupidly computed) eigenvalues of all 312 = 531,441 dimension
m = 13 zero-diagonal circulant matrices with population −1, i, and 1. Why
does this density plot look as it does? Circulant matrices are related to
magic squares...
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More on Bohemians

You can find an older version of this talk at [YouTube link] a video on
my YouTube channel.

You can find a related talk at

[YouTube link]“Skew Symmetric Tridiagonal Bohemians”

The (Maple Transactions!) papers that talk refers to are

[link] What can we learn from Bohemian Matrices?
https://doi.org/10.5206/mt.v1i1.14039

and

[link] Skew-symmetric tridiagonal Bohemian matrices
https://doi.org/10.5206/mt.v1i2.14360

See also chapter 5 of [link] the online version of my New Book,
Computational Discovery on Jupyter, with Neil Calkin and Eunice
Chan (to be published by SIAM physically ... next month, perhaps!)
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Thank you

Thank you for listening!

This work was partially supported by NSERC grant RGPIN-2020-06438,
and partially supported by the grant PID2020-113192GB-I00
(Mathematical Visualization: Foundations, Algorithms and
Applications) from the Spanish MICINN. I also thank CUNEF
Universidad for financial support.

This visit to Cardiff is funded in part by a grant from the Heilbronn
Institute for Mathematical Research.
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