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Maple Transactions

Announcing Maple Transactions
an open access journal with no page charges

mapletransactions.org

We are looking for expositions on topics of interest to the Maple
community. Use of Maple is not required. Listed in DBLP and CORR.
Journal launched in 2021. Have a look; for instance at my paper
Special functions in Maple, a personal view.

Our first issue featured a paper by Peter Baddoo and Nick Trefethen
on Log-lightning computation of capacity and Green’s functions. A
later issue featured Fredrik Johansson’s Arbitrary precision
computation of the Gamma function.
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The Mathieu equation

d2y
dx2 + [a− 2q cos(2x)] y = 0 . (1)

The parameter q is given by the physics or the geometry of the
specific problem at hand; the eigenvalue a must be calculated in
order to ensure periodicity of y, given q. There are an infinite number
of eigenvalues a for any particular value of q, and these are
numbered in a conventional order.

The so-called modified Mathieu equation is related to equation (1) by
the transformation z = ±ix (the sign makes no difference):

d2y
dz2 − [a− 2q cosh(2z)] y = 0 . (2)

3



Mathieu functions

The Mathieu functions are defined to be the 2π periodic solutions of
the Mathieu equations. Other solutions to the Mathieu equation are
not, technically, Mathieu functions.

The Mathieu functions are commonly written as cem(z;q) and
sem(z;q). Modified Mathieu functions are not periodic and are
written Cem(z;q) and Sem(z;q).

[Other names: angular and radial Mathieu functions].

Because
y′′
y = −n2 (3)

and
y′′
y = −a+ 2q cos 2x (4)

are not so different for small q, we expect that the eigenvalues a will
be close to the squares of integers, for small q.

cem(z;q) is like cosmz and sem(z;q) is like sinmz, at least for small q. 4



Fourier series and Ince’s matrix formulation

Postulating a Fourier series expansion for a Mathieu function gets
(by the trig identities for cos 2x cos kx and for cos 2x sin kx) an infinite
tridiagonal matrix for the Fourier coefficients, after separating out
the even and odd m.

2 cos 2x cos k x = cos(k+ 2)x+ cos(k− 2)x (5)
2 cos 2x sin k x = sin(k+ 2)x+ sin(k− 2)x (6)
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Eigenvalues and Eigenfunctions: for ce2j(z;q)



0
√
2q 0 0 0 · · ·

√
2q 4 q 0 0 · · ·

0 q 16 q 0 · · ·

0 0 q 36 q · · ·

0 0 0 q 64 . . .

...
...

...
... . . . . . .





√
2A0

A2

A4

A6

A8
...


= a



√
2A0

A2

A4

A6

A8
...


. (7)

The eigenvalues of this matrix are denoted a0(q), a2(q), a4(q), . . . and
indeed for real q these occur in increasing order:
a0(q) < a2(q) < a4(q) < · · · .
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Eigenvalues and Eigenfunctions: for ce2j+1(z;q)



1+ q q 0 0 · · ·

q 9 q 0 · · ·

0 q 25 q · · ·

0 0 q 49 . . .

...
...

... . . . . . .





A1

A3

A5

A7
...


= a



A1

A3

A5

A7
...


(8)

The eigenvalues of equation (8) are denoted a2j+1(q).

The eigenvectors give the Fourier coefficients of the corresponding
eigenfunction ce2j+1(z;q). Indexing becomes perplexing.
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Eigenvalues and Eigenfunctions: for se2j(z;q)



4 q 0 0 · · ·

q 16 q 0 · · ·

0 q 36 q
. . .

0 0 q 64 . . .

...
...

... . . . . . .





B2

B4

B6

B8
...


= a



B2

B4

B6

B8
...


(9)

The eigenvalues of equation (9) are denoted b2j(q).
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Eigenvalues and Eigenfunctions: for se2j+1(z;q)



1− q q 0 0 · · ·

q 9 q 0 · · ·

0 q 25 q · · ·

0 0 q 49 . . .

...
...

... . . . . . .





B1

B3

B5

B7
...


= a



B1

B3

B5

B7
...


(10)

The eigenvalues of equation (10) are denoted b2j+1(q).
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Normalization

In appendix B of [1] we find a derivation of the bilinear form
(f,g) =

∫ 2π
0 f(x)g(x)dx under which eigenfunctions are orthogonal,

and a proof that the inner product < f,g >=
∫ 2π
0 f(x)g(x)dx does not

work when q is nonreal.

This allows the possibility that Mathieu functions might have zero
“norm” and indeed, for values of q for which there are double
eigenvalues, they do.

So instead we normalize in the same way as the DLMF in equations
28.2.38 and 28.2.39 by insisting that either y(0) = 1 and y′(0) = 0 (like
cosine) or y(0) = 0 and y′(0) = 1 (like sine).
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The conventional ordering of eigenvalues

For q = 0 the eigenvalues are all m2 for m = 0, 1, 2, . . .. But they are
(technically) double eigenvalues at q = 0, denoted am(q) and bm(q)
because at q = 0 the am(0) = bm(0).

Conventionally, as real q increases from 0 we smoothly follow the
numbering, and the eigenvalues interlace.

If q is complex we imagine a smooth path, say θq for 0 ≤ θ ≤ 1, and
assign the index m for the eigenvalue that ensures that am(0) = m2.
This doesn’t always work, though, because at a double eigenvalue
the numbering becomes ambiguous.
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Gertrude Blanch and Double Eigenvalues

In the 1930s Mulholland & Goldstein computed the first few digits of
the smallest norm value of q for which a double eigenvalue exists:
ce0(z;q) and ce2(z;q) coalesce when q ≈ 1.469i. In the 1960s
Gertrude Blanch and her coauthors were the first to systematically
compute the double eigenvalues. Their work was confirmed and
extended by Hunter and Guerrieri in 1981.

Double eigenvalues were studied theoretically in the 1950s by
Meixner and Schäfke and, later, Wolf. They were proved to be
isolated, and triple eigenvalues and higher were ruled out.

But I could find no studies or software for the generalized
eigenfunctions that seem to be needed for completeness of
expansions. Even the numbering of the eigenvalues becomes
problematic at double points (the Digital Library of Mathematical
Functions has a convention that works in some circumstances)
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Do we really need generalized eigenvectors/eigenfunctions?

The first and simplest way [to deal with double eigenvalues] is undoubtedly
what people actually use: one pretends that the eigenvalue is not actually a
double one—typically because of rounding error it would have split anyway
into a∗+d

√
q− q∗+· · · and a∗−d

√
q− q∗+· · · where q is a floating-point

approximation to q∗ anyway—and then use the computed eigenfunctions
from the matrix method, each with norm O((q − q∗)1/2) and simply live
with the errors. That does not sound like professional practice, but if it is
done knowingly then we suspect that it will usually give perfectly reasonable
answers. If done unknowingly then we disapprove, but the criminals will
likely get away with it.
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Can frequently avoid them

If one is solving a Helmholtz equation and the parameter q is purely
imaginary and one needs a range of q that includes a double
eigenvalue, then strictly speaking one needs to examine the
generalized eigenfunctions.

BUT the solution to the underlying PDE is continuous with respect to
q so if one samples just below the double point and just above the
double point the solutions one gets will actually be close together
and appear to vary smoothly: it’s only the representation as a sum of
eigenfunctions that has a representational discontinuity. If you don’t
get too close, the numerical difficulties (cancellation) aren’t that bad.

If you did get too close to the double point, then computation of the
eigenvalue (on some systems) slows down drastically because
Newton’s method fails to converge quickly.
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Dealing properly with them, anyway

Brutally truncating one of our matrices (for illustration purposes)
0

√
2q 0 0√

2q 4 q 0
0 q 16 q
0 0 q 36

 (11)

has a characteristic polynomial p(λ,q) that depends on q. The
discriminant of p(λ,q) with respect to λ is

2048q12 + 606208q10 + 401883136q8 + 55523147776q6

+ 1115022163968q4 + 147288924094464q2 + 313103115878400 . (12)

The smallest magnitude roots of this are approximately
±1.46876833683659i which gives the Mulholland–Goldstein value to
accuracy about 10−7. At this value of q the matrix has a double
eigenvalue. That double eigenvalue is a good approximation to a
double eigenvalue of the Mathieu equation.
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Blanch & Clemm Double Points

Figure 1: The double points known to Blanch & Clemm. I do not know any
asymptotic formula, but such would clearly be useful.
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The Jordan form

The Jordan form of that brutally truncated matrix is
λ1 0 0 0
0 λ2 0 0
0 0 a 1
0 0 0 a

 (13)

There is an eigenvector, giving the Fourier coefficients of the
coalesced Mathieu functions ce0(z,q) ≈ ce2(z,q). The generalized
eigenvector of the matrix gives the Fourier coefficients of the
generalized Mathieu function. These can also be used in the
Fourier–Bessel series for the modified Mathieu equation (I called
those series preposterous).
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Why that works

The Mathieu equation is

y′′ + (a− 2q cos 2x)y = 0 . (14)

The generalized function is u = ∂y/∂a and so satisfies

u′′ + (a− 2q cos 2x)u+ y = 0 . (15)

In operator form this is(
D2 + a− 2q cos 2x

)
u = −y (16)

and if we replace D by the differentiation matrix and u and y by their
vectors of Fourier coefficients we get the generalized eigenvector
equation from the Jordan form. This might be obvious to people who
teach linear algebra for a living but I had to painfully reconstruct the
connection.

This works, in spite of the notorious ill-conditioning of the Jordan
form, but is not what I used.
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What I really did

I computed the double eigenvalues accurately by two-dimensional
Newton’s method refining estimates in the literature (Blanch &
Clemm, Hunter & Guerrieri) (but simple averaging works fine, once
you have identified the nearly-equal eigenvalues). I then solved the
Mathieu differential equation using a Hermite–Obreshkov numerical
method on a blendstring (see [2]). Then I computed the Green’s
function and directly solved the generalized eigenfunction equation:

u′′ − (a− 2q cos 2x)u = −y (17)

subject to zero initial conditions, by integration (integration of
blends is easy).

I tested the residual and found it zero apart from rounding error.
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Some graphs

(a) coalesced eigenfunctions (b) generalized eigenfunction

Figure 2: left: Real and imaginary parts of the coalesced eigenfunctions
v1(z) = ce0(z; q) = ce2(z; q) corresponding to the Mulholland-Goldstein
double point q ≈ 1.4688 i (real part in black, imaginary part in red). On the
right, we have the corresponding generalized eigenfunction obtained by
solving y′′ + (a− 2q cos 2z)y+ v1 = 0.
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More

(a) coalesced eigenfunctions (b) generalized eigenfunction

Figure 3: left: Real and imaginary parts of the coalesced eigenfunctions
v1(z) = se2(z; q) = se4(z; q) corresponding to the next-largest pure imaginary
double point q = 6.92895 . . . i with eigenvalue approximately 11.1905. On the
right, we have the corresponding generalized eigenfunction obtained by
solving y′′ + (a− 2q cos 2z)y+ v1 = 0.
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Why did I do it that way?

The Fourier and Fourier–Bessel methods seem to be the methods of
choice for Mathieu functions. But I wanted something that I could
independently assess for accuracy, and which might be useful in
nonperiodic contexts (I am aiming at D-finite or holonomic functions,
which have cheaply-available Taylor coefficients). This is ongoing
work.
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For Future Work

Desiderata:

• Sensible notation
• Bulletproof code (to use as Blanch says, “in a robot-like
manner”)

• Asymptotic formulae for the double points

Stay tuned.
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Thank you for listening.
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