
Floats for Philosophers:

A talk in three parts

Robert M. Corless

August 2024

Western University, Canada

Slides available at rcorless.github.io; please download them

Joint work with Nic Fillion

1

rcorless.github.io

Maple Transactions

Announcing Maple Transactions

a “Diamond” class open access journal with no page charges

Now listed by DBLP

mapletransactions.org

2

https://dblp.org/db/journals/maple/index.html
https://mapletransactions.org/index.php/maple

Reaching an audience of Philosophers

• Many philosophers prefer a very high-level view

• I prefer to work up to high-level views by generalizing from examples

(this may be a mismatch of styles, no more)

• Even though I have now been cross-appointed to Philosophy for

nearly 20 years now, I haven’t yet adapted to the differences in styles

(the above is only one instance)

• I’ll do my best, today, though

3

Contents

I Floats vs the “real” world

II Floats can be extremely successful, and we can prove some things

III Some of the remaining problems are a bit embarassing: the

algorithms work, but we can’t fully explain why

4

Floats vs “real” numbers

• Why don’t computers use “real”∗ or complex numbers, but rather

floating-point numbers? Answer: Because we can’t use real

arithmetic (most of the time)—they’re not computable in

general—and in the rare cases we can, it’s too slow, and except in

even rarer circumstances the effort would be wasted.

• What’s so important about floats? Answer: They make computer

memory usage predictable, and therefore fast.

You can argue about these claims, but you’ll be arguing in a mostly

empty room. Most of the computing world uses floating-point arithmetic.

Even if they grumble, they use it. This talk takes IEEE floats as being

graven in stone, and we will today examine consequences, and not

contest antecedents.

∗ “Real numbers” should have been called “continuum numbers”, or

something even less ambiguous. The confusion caused by calling them

“real” is just brutal.

5

Direct consequences

Admit, for instance, the existence of a minimum magnitude, and you will

find that the minimum which you have introduced, small as it is, causes

the greatest truths of mathematics to totter.

—Aristotle, On The Heavens

The most important observation is that the set of floating-point numbers

is finite. This means that there is a largest float and a smallest positive

float (vide Aristotle’s warning above!). There are—there have to

be—gaps between floats.

This means (among other catastrophes) that several venerable paradoxes

rear their heads.

6

Zeno of Elea, circa 490–430BCE

The Stanford Encyclopedia entry on Zeno’s paradoxes lists nine paradoxes

attributed to Zeno. Let’s choose one, and paraphrase it in two ways.

Suppose Atalanta (who was famous for her running speed) had to travel

from x = 1 to x = 2 (say, in meters). Zeno notes that before Atalanta

gets to 2, she first has to get to 1 + 1/2. Before she gets there, she first

has to get to 1 + 1/4. Continuing in this way, Zeno arrived at the

paradox that Atalanta couldn’t even get started, because there were an

infinite number of things she had to do before getting anywhere.

7

https://plato.stanford.edu/entries/paradox-zeno/
https://en.wikipedia.org/wiki/Atalanta

Atalanta in floating-point

one := 1.0

s := 1.0 # Atalanta wants to step at least one meter

zeno := 0

The following loop requires specification

while one+s > one do

s := s/2 # Reduce Atlanta’s step size by half

zeno := zeno + 1

end do:

8

What happens

In Matlab and in Python∗ using NumPy, the loop terminates with the

variable “zeno” having the value 53, and the variable “s” having the

value 2−53 which is approximately 1.1× 10−16. Zeno might have been

surprised, but would doubtless point out that Atalanta still can’t get

anywhere, because taking a step of size 1.1× 10−16 leaves you in exactly

the same place! Which is reminiscent of some of his other paradoxes.

Recall that a proton’s width is now widely accepted to be 0.84

femtometers, or 8.4× 10−16 meters. Floating-point arithmetic provides a

finer measurement of matter than a molecular or atomic model does!

∗ Double precision in Fortran does the same. With C, it’s mostly the

same. Maple does something different (but still terminates).

9

Starting from zero would be different

A crucial part of the floating-point idea (which I am not going to

pursue much here): zero is different, in floating point, from all other

floating-point numbers. The set of floats is much denser around 0 than it

is around any nonzero float (such as 1). This has deep implications for

simulation of dynamical systems. See Gora and Boyarsky, “Why

computers like Lebesgue measure” for the beginnings of an explanation.

[We suspect Zeno, Lebesgue, and Cantor would have all got along fine.]

10

https://doi.org/10.1016/0898-1221(88)90148-4
https://doi.org/10.1016/0898-1221(88)90148-4

Wendy Parker on Simulation

Evidence and Knowledge from Computer Simulation is an example of a

recent philosophical study of computer simulation. The author (Wendy

Parker) does not mention floating-point arithmetic, except obliquely by

the use of words like “approximation.”

This talk is much less ambitious than Parker’s work—we are looking

today only at the effects of “rounding error,” which most people think

too boring and horrible to spend much time on.

I hope to convince you that this is not so, and instead that it’s

worthwhile to spend at least a little time with.

11

http://dx.doi.org/10.1007/s10670-020-00260-1

Some details about floats

I will only talk about IEEE Standard floats. For background, read

Kahan’s 1981 paper “Why do we need a floating-point standard?”. See

also his 1983 paper (one of my favourites—do read it!) Mathematics

written in sand.

“A computer is deemed Reliable when its users are never surprised by

something its designers must later apologize for.” — from that

just-mentioned paper by Kahan

12

https://people.eecs.berkeley.edu/~wkahan/ieee754status/why-ieee.pdf
https://people.eecs.berkeley.edu/~wkahan/MathSand.pdf
https://people.eecs.berkeley.edu/~wkahan/MathSand.pdf

The IEEE floating-point standard

The IEEE floating-point standard was established in 1985, and has been

revised a number of times since. The current version was described in

2019, according to Wikipedia. [That page is an excellent one, by the

way.]

I’ll talk about the “binary64” or double-precision format, which encodes

each such float into a 64-bit number, and about “binary16” or

half-precision, which is becoming so popular for large-scale computations

because each one uses just 16 bits.

13

https://en.wikipedia.org/wiki/IEEE_754

Half-precision

Figure 1: Image courtesy Wikipedia. Credit: Habbit/ Codekaizen - CC BY-SA

3.0

14

Double-precision

Figure 2: Image courtesy Wikipedia. Credit: Codekaizen - CC BY-SA 3.0

15

Aristotle’s “minimum magnitude”

Floats have different “minimum magnitudes” depending on the context.

The most important one (usually) is half the distance to the next greater

floating point number. Starting at 1, this number is called the unit

roundoff and is usually denoted u or µ. If 0 < s < µ, so s is a small

positive number, then 1 + s is closer to 1 than it is to the next float

larger than 1.

So it rounds down to 1 (Atalanta’s step doesn’t get her anywhere).

If s = µ exactly, then there is a choice, to round up or to round down; to

reduce bias in long computations, the “round-to-even” rule is used and

one rounds to the one of x1 or x2 whose last bit is zero. For x1 = 1 and

x2 being the next larger number, the number is 1. Since Atalanta’s step

sizes were always powers of 1/2, this actually happened in the loop.

16

Floats cannot be associative, then

It’s a brutal shock to many that (a+ b) + c is not necessarily a+ (b+ c)

if one uses floating point arithmetic. Here is an example. Suppose

M = 1.0× 1022 (about the mass of the moon in kilograms). Then

100 +M −M will be 0 if computed as (100 +M)−M and 100 if

computed as 100 + (M −M).

This is a mathematical truth that has to totter when a minimum

magnitude is introduced into the system.

17

Rebellion! We’ll invent our own arithmetic!

The most popular alternatives to floating-point are interval arithmetic, its

poor cousin significance arithmetic, and arbitrary-precision floating-point

arithmetic. All have their own problems, but they have their uses.

But none of them are associative, either.

18

Arb (an interval arithmetic system) in Maple

Figure 3: Using interval arithmetic in Maple

19

Another important fact: Roundoff is Not Random

Figure 4: Roundoff is Not Random. This is the forward error in a certain

rational function, evaluated at 378 neighbouring double-precision numbers.

This example is a variation of an example of W. Kahan as used by Nick Higham

(cf Figure 1.6 in his book Accuracy and Stability of Numerical Algorithms).

20

Yet in spite of all that

Floating-point arithmetic is a HUGE SUCCESS. And IEEE floats in

particular are a huge part of that.

Do I need to multiply examples?

No, I do not. On to part II.

21

Part II: We can prove things

Floats can be extremely successful, and we can sometimes prove that

they will be, ahead of time. At other times, we can provide a proof that

explains the success of an algorithm.

Sometimes floats fail spectacularly, and we can prove that this has to

happen (and give circumstances to avoid).

22

One more bad example first

Consider the quadratic equation x2 − 2bx + 1 = 0. Its solutions are

x = b ±
√
b2 − 1 . (1)

This formula was (probably) known to the Babylonians. Every

schoolchild that is old enough knows it (with ax2 + bx + c = 0, the

above is just a special case).

We’ll solve it in (say) Matlab.

23

Matlab

We choose a lot of values of b, from 106 up to 109, logarithmically

spaced. b = logspace(6,9,2024);

r1 = b + sqrt(b.^2 - 1);

r2 = b - sqrt(b.^2 - 1);

one = r1.*r2;

figure(1), semilogx(b, one, ’b.’), grid on

24

The results

Figure 5: (b +
√
b2 − 1) · (b −

√
b2 − 1), which should be 1. Rounding errors

are not random! Analysis can reveal the culprit, here.

25

The relation to real analysis

The big thing that the IEEE standard does for us is The floating-point

result of any basic operation on pairs of numbers must be the exact

result, rounded to the nearest machine number. This is the best possible

outcome.

In symbols, (for + but can replace by −, ·, and /)

fl(a+ b) = (a+ b)(1 + δ) (2)

where |δ| ≤ µ, the unit roundoff. No such guarantees for operations on

three or more floats.

Using these, we may painstakingly prove theorems about certain

algorithms. Quite astonishingly, many important modern algorithms (e.g.

partial pivoting∗ for Gaussian elimination, or QR decomposition) rely on

rounding errors cancelling themselves during the process. These don’t

work well in interval arithmetic!

∗ Embarassingly, there is no full proof for this. Trefethen & Schreiber

1990 is the best we know. 26

https://people.maths.ox.ac.uk/trefethen/publication/PDF/1990_44.pdf
https://people.maths.ox.ac.uk/trefethen/publication/PDF/1990_44.pdf

Errors in the quadratic formula

The floating-point value of b2 is b2(1 + δ1) for some small δ1. The

floating-point value of b2 − 1 is thus (b2(1 + δ1)− 1)(1 + δ2) for some

small δ2. Then the square root is
√
b2(1 + δ1)(1 + δ2)− (1 + δ2). This

is quite close to b, if b is large. Then subtracting this from b gives us

another formula we can analyze.

In words, subtracting two nearly equal quantities reveals the earlier

rounding errors because the correct significant figures cancel. This is

called “catastrophic cancellation.” [There is such a thing as “benign

cancellation,” by the way.]

It’s interesting, though, that those revealed rounding errors are not

random.

27

Backward Error: a tool for computational epistemology

Although backward analysis is a perfectly straightforward concept there is

strong evidence that a training in classical mathematics leaves one

unprepared to adopt it. ... I have even detected a note of moral

disapproval in the attitude of many to its use and there is a tendency to

seek a forward error analysis even when a backward error analysis has

been spectacularly successful.

—J. H. Wilkinson. The state of the art in error analysis.

NAG Newsletter, 2/85:5–28, 1985.

28

Backward error for the quadratic formula

The two computed roots x1 and x2 were the exact roots of

x2 − 2bx + one (where “one” was the quantity we plotted). Compared to

2b, which was about 108 when the difficulties started to be visible, “one”

is pretty small, though not that small. In that sense, we had computed

the exact roots of a “nearby” polynomial—but it wasn’t terribly close to

the original; certainly not 16 figures close. This backward error view

shows that our computation wasn’t very good (and we did not have to

compare to the exact answer, which would be a “forward” error analysis).

We also didn’t need those δks, either. Backward error analysis is

frequently simpler than forward analyses.

29

Error in the 2b coefficient

Figure 6: The relative error (x1 + x2 − 2b)/(2b). This is uniformly small (but

again we see it is not random).

30

A typical backward error result

Theorem: When evaluating the polynomial∗

p(x) = a0 + a1x + a2x
2 + · · · anxn (3)

(with real floating-point coefficients ak , and at a real floating-point value

of x) by use of Horner’s method using an IEEE-854 floating-point

compliant system with unit roundoff µ, and if the degree n is smaller

than 1/(3µ), then the computed result is the exact value of

p̃(x) = a0(1 + δ0) + a1(1 + δ1)x + a2(1 + δ2)x
2 + · · · an(1 + δn)x

n (4)

where each δk is bounded by |δk | ≤ 3nµ/(1− 3nµ).

NB: Using double precision µ = 2−53 ≈ 1.1× 10−16.

∗ And by the way polynomials are really important in scientific

computing. All computers can really do is add, multiply, subtract, and

divide; if you only do the first three, that’s a polynomial.

31

Horner’s method

Horner’s method in pseudocode is

p := c[n];

for k from n-1 by -1 to 0 do

p := c[k] + x*p;

end do;

The proof of the theorem uses mathematical induction and the IEEE

guarantees about floating-point operations, namely that they must give

the exact result, correctly rounded to the nearest floating-point number

(with a special tie-breaking rule for those rare times where the exact

result is half-way between floating-point numbers, called “round to

even”).

In words, Horner’s method is numerically stable.

32

“Cashing that out”—see, I know some philosopherese

• Computation with floating-point is different from computation with

“real” numbers. In particular, inevitable rounding errors can

accumulate.

• Backward error analysis puts such differences on the same footing as

data errors.

• Since you have to understand the effects of data errors anyway

(typically by perturbation methods) this represents a potentially

significant economy of human effort.

33

A strong backward error result

Suppose that we want to solve a triangular linear system of equations

(about the easiest kind there is, almost). Say Tx = b where T is an

n × n matrix that happens to be “upper triangular” in shape—that is,

the entries below the main diagonal are all zero. The given vector b is

just a collection of n numbers, and the desired solution x is a vector of

unknowns.

34

The theorem

Then computation with IEEE standard floating point arithmetic

guarantees that using back substitution (absolutely the most natural

algorithm) gives you a computed x̂ which is the exact solution of

(T +∆T) x̂ = b (5)

where each entry of ∆ti,j of ∆T satisfies |∆ti,j | ≤ γn+9|ti,j |. In words,

the computed solution solves a linear system of exactly the same type,

where the nonzero entries ti,j(1 + δi,j) are very nearly the same as the

original. Zero entries are not disturbed. Each perturbed entry has

been changed by at most (n + 9)µ/(1− (n + 9)µ); for n + 9 < 10d this

preserves 16− d decimal digits in the data. If n is a thousand, and you

are using double precision, that means you got the exact solution to a

system of the same kind as you wanted, where the data was the same up

to about 12 figures. If you are an astronomer, you might have data so

precise; but usually not otherwise.

Nothing special has to be done—this is a guarantee for the most natural

algorithm. 35

An amazingly strong BEA theorem∗

Simulating the Gauss map xk+1 = frac(1/xk) from (0,1) to (0,1) in IEEE

floating point gives an orbit of floating-point numbers x0, x1, x2, . . .

which is uniformly shadowed by an orbit of the true (continuum

numbers) Gauss map where the initial value x̂0 is O(µ) close to the

floating-point x0. [The shadowing is done by the orbit of the continued

fraction that the numerical map generates.]

This means that every computed orbit is shadowed by a real one, with a

really nearby initial condition. Corless, 1992, Continued Fractions and

Chaos

We will investigate this in this talk using half-precision.

∗ Well, I think so

36

https://www.jstor.org/stable/2325053
https://www.jstor.org/stable/2325053

Does that mean the forward error is small?

Not necessarily. “Ill-conditioned” problems are sensitive to changes.

“Chaotic” problems are exponentially sensitive. A difference of O(ε) in

initial conditions will, in O(ln ε) time, produce O(1) changes in the

solution.

But then they are sensitive to changes in the model or data as well, and

you needed to know that anyway.

[If nothing about the problem is insensitive to perturbations, you will not

be able to predict anything about it. So there has to be something.]

37

The basic method of BEA

• First one designs an algorithm

• Ideally, one tests it, sees that it works well, and then proves that it’s

numerically stable

• Then one shows how to compute the sensitivities of the problem the

algorithm solves. In some cases one gets a “condition number” K so

that for input x and output y one can estimate the relative effects of

changes ∆x to the input

∆y

y
≈ K∆x

x
(6)

38

Reminder: floats are finite in number

There are fewer than 216 = 65,536 half-precision floats. [Some of the

patterns encode things like NaNs (NaN=Not-A-Number) and infinities.]

There are fewer than 264 ≈ 1.844× 1019 double-precision numbers.

Theorem: Every deterministic discrete dynamical system xk+1 = F (xk)

ultimately cycles, for every floating point starting value x0, when

executed in floating-point arithmetic. In particular, there is no chaos, or

even quasiperiodicity. There are only transients, then cycles. The

transients and cycles may all be surprisingly short.

39

A schematic

Figure 7: A schematic of a dynamical system acting on a subset of

floating-point numbers. Each node represents a floating-point number. The

arrow represents the map F (x) from one float to another. Ultimately the orbit

must cycle (perhaps of length one, which is called a “fixed point”).

40

The length of the transient and the length of the cycles

If the dynamical system F is chosen “at random” (whatever that means)

then one can expect that the length of the longest cycle and the length

of the longest transient will be O(Nd/2) where N is the number of floats

available, and d is the dimension of the attracting set.

This “square root” behaviour (the factor 1/2 in the exponent) means

that the cycle length can be surprisingly short. In half-precision for d = 1

this is just 181, so one ought not to be surprised if the longest cycle has

about 200 elements in it.

Now on to some extended examples.

41

Part III: Two extended half-precision examples

In this section we look at two dynamical systems, which we can prove

some things about (although not everything).

We will then stand back and marvel at how successful they are, in spite

of their limitations. Even in half precision!

42

Our first example: The Gauss Map

The discrete dynamical system given by the Gauss map

G (x) = frac(1/x), taking the fractional part of 1/x , is well-defined on

(0,1). Its iterations show up in the theory of continued fractions. If x = 0

then we specially define G (0) = 0 and so the iteration reaches an

artificial fixed point (an orbit of period 1).

When implemented in floating-point, all its orbits are ultimately periodic.

I wrote about this thirty years ago and proved some theorems. Today

we’ll talk about what happens in half-precision, float16. I used the Julia

implementation of float16 for my computations, but I analyzed the

output in Maple.

Nic and I co-supervised a student, Irene Claudia Noharinaivo, at AIMS in

2020, the African Institute of Mathematical Sciences, who worked in

Python on this project. I’ll take her work further in this talk.

43

Continued fractions

We can write √
2 = 1 +

1

2 + 1
2+ 1

2+ 1
2+ 1

···

(7)

That’s hard to typeset so we write
√
2 = 1 + [2, 2, 2, . . .].

A general simple continued fraction in (0,1) can be written [a1, a2, a3, . . .].

If the number is rational, the continued fraction terminates.

The Gauss map takes [a1, a2, a3, . . .] to [a2, a3, a4, . . .]. That is, it shifts

the entries of the continued fraction by 1 and discards the first entry.

See C.D. Olds, “Continued Fractions.” He won a Chauvenet prize for his

paper on the simple continued fraction of e, and his book is likewise

utterly lucid.

44

The unit interval

There are 15,361 float16s between 0 and 1, inclusive. We generate them

by putting x[1]=Float16(1) (the Julia syntax for creating a float16 copy

of the number 1) and generating the next one smaller by the command

x[k+1] = prevfloat(x[k]). To find the number 15,361 I simply counted

them all—I did not deduce what the number should have been from the

definition, although I could have, because 15360 = 15× 210.

The 256 smallest nonzero numbers, from x15,105 down to x15,360, behave

badly under the Gauss map. When you invert them, they overflow

because they are too big to fit in the float16 format. [These are the

smallest “subnormal” numbers, though I don’t really want to talk about

them.]

The next smallest nonzero numbers, from x10225 down to x15,104, are not

so bad, but when you invert them you get numbers which are “big

integers” in that their fractional parts fall off the end of the float16, so

the fractional part is 0. So all of these numbers get mapped to 0.

45

Everything else

We analyze the orbits by using the GraphTheory package in Maple. This

tells us that there are 9 connected components of the graph. Each vertex

in the graph represents a distinct float16, and each directed edge tells

which float16 the Gauss map takes it to.

46

https://en.wikipedia.org/wiki/Graph_theory

Float8

Nobody uses 8-bit floats. But to make some understandable pictures I

simulated them in Maple. One bit for sign, three bits for exponent, and

four bits for significand. This gives 49 float8s in [0,1]. The Gauss map

has 4 components on this reduced set, with [17, 14, 8, 10] elements,

respectively (a one-cycle, two two-cycles, and a three-cycle).

47

The 1st component

Figure 8: The first component, ending at 0

48

The 2nd component

Figure 9: The second component, ending at a two-cycle

49

The third component

Figure 10: The third component, ending at another two-cycle

50

The 4th component

Figure 11: The fourth component, with the three-cycle 1.10012 × 2−1,

0.10012 × 2−2 (a subnormal number), and 1.00102 × 2−1.

51

Components in Float16

Back to half-precision, Float16, and the components of the Gauss map

on the 15,361 float16s in (0,1). The sizes of these components are (after

removing 256 entries from the first component that actually lead to

NaN16s)

{11119, 1273, 286, 587, 198, 1477, 126, 38, 1} (8)

The first component is the largest. Every element in that component

ultimately goes to 0 under iteration of xk+1 = G (xk). All rational

numbers should go to 0 ultimately.

52

The smallest component

In contrast, the smallest component has just one entry, x783 = 0.618 (in

decimal form), and it has G (x783) = x783, a fixed point. Moreover, no

other float16 is mapped to that fixed point. It’s not an accident that this

is the closest float16 to the golden ratio. This means that we can

correctly compute the infinite continued fraction for

ϕ = (1 +
√
5)/2 = 1.618 . . . = 1 + [1,1,1, . . .] using half-precision.

53

Next smallest component

The 8th component has 38 elements. Following each possible path here

leads to the fixed point x1833 = 0.3027. NB

(
√
13− 3)/2 = 0.3027756 . . . = [3,3,3, . . .]. The longest such path has

five elements in it.

54

Next smallest after that

The 7th component has 127 elements. Following each possible path leads

to the fixed two-cycle a = 0.3281 and b = 0.04688. The longest path to

that cycle has just six elements in it. NB

(
√
469− 21)/2 = 0.3282039 . . . = [3,21,3,21,3,21, . . .] while the other

number is (
√
469− 21)/14 = [21,3,21,3, . . .].

55

The 6th component

The sixth component has the longest cycle, with 18 entries (a random

map with this many floats in it could be expected to have a cycle of

length 123). The longest transient leading to this cycle has 26 elements

in it, including the element in the cycle that it hits. [The 2nd component

has a longer transient, with 30 elements in it. The 2nd component has a

6-cycle.]

56

More about the largest component

The largest component has 11,119 elements in it, plus 256 elements in it

that lead to NaN16s and should have their own category. This is about

2/3 of the available float16s. But about 5,000 of these are so small that

on inversion they are “automatic” integers on rounding.

All 11,119 entries go to zero in twenty or fewer steps of the map. There

are just three entries which take exactly twenty steps: x740 = 0.639,

x1476 = 0.39, and x1924 = 0.2805. Every other transient is shorter.

57

Contrast with the “true” Gauss map

Almost all real numbers have infinite orbits under the Gauss map. With

probability one, the patterns of the orbit never repeat. The Lyapunov

exponent is positive (π2/(6 ln 2) for almost all initial values); this map is

chaotic, and forward error wouldn’t help.

All rational numbers (set of measure 0) have finite orbits, terminating at

zero. The longest exact orbit of any exact rational float16 has 14 entries,

and only two achieve that (1893/65536 and 1809/524288).

All ultimately periodic orbits are quadratic irrationals (this is a theorem

of Lagrange). All purely periodic numbers are a specific subset of those

(this is a theorem of Galois).

The floating-point orbits couldn’t be more different in kind, even though

every floating-point orbit is shadowed by a true orbit starting O(µ) close

to the initial point.

58

It gets the distribution mostly right, though!

I claim that the float16 orbits, even though they are wrong in character

(not just wrong by rounding errors) can still be useful. One can compute

the Lyapunov exponent pretty well by the long transient plus long cycle

orbit.

That this works is not fully explained, though.

59

The Logistic Map

Nic used the Logistic map L(x) = 4x(1− x) in one of his talks. This, too,

has an analytical solution and reduces to the tent map, so we know that

this is also chaotic. If we repeat all the graph theoretical analysis above,

this time for the float16 version of the Logistic map, we find that 5902 of

the initial points lead, after at most 55 iterations, to 0. The value 3/4 is

a fixed point, and 1/4 goes to 3/4. The remaining 10,267 half-precision

numbers go, after at most 83 iterations to a cycle of length 40.

60

That cycle

Figure 12: Where the forty elements of the half-precision logistic cycle lie.

61

Comparing to the true distribution

Figure 13: The true distribution of the “real” logistic map is 1/(π
√

x(1− x))

(red line). The distribution of the forty element cycle is shown as a histogram.

Float16 FTW

62

Concluding remarks

What you should take away:

• Floats are amazing

• Backward error analysis can tell you if an algorithm is numerically

stable, which means that it gives you the exact answer for a nearby

question (data, model) economising human effort.

• Some problems (e.g. chaotic problems) are sensitive to changes

• Even the strongest backward error results can be tricky: your nearby

problem may not be “typical” of the problems in the neighbourhood.

This is an open problem in modelling, even though many physicists

want to believe that it’s solved. See e.g. Paul Tupper’s 2009 paper

on Molecular Dynamics to see that it is not solved.

• I didn’t say this, but although Backward Error Analysis (BEA) can be used for

floating-point arithmetic, it can also be used for other approximation methods.

It’s quite useful.

63

https://doi.org/10.1137/08072526X
https://doi.org/10.1137/08072526X

Acknowledgements

Irene Claudia Noharinaivo got us interested in the Gauss map again.

Tony Roberts sent us the quote from Wilkinson. Paul Tupper has sent

several useful remarks, in addition to the reference to his extremely

interesting 2009 paper.

I also thank Bill Harper for getting me involved with Philosophy at

Western, so many years ago, by inviting me to co-teach his course on

gravity. That was a lot of fun, and has led to a lot more over the years.

Thank you for listening.

64

