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Mandelbrot polynomials and Matrices

The talk is also related to Mandelbrot polynomials and matrices.
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Polynomials (Jonfest proceedings, 2013)

2 Bini and Robol's MPSolve paper (JCAM 2014) (version 1 was 2000,
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Generalized Standard Triples X, L(z), & Y

Theorem
Let P(z) € C"™" be a regular matrix polynomial expressed in terms of

a polynomial basis {¢i(2)}C_, i.e. P(z) = Zﬁzo Prdr(2) . Consider a
linearization L(z) = zB — A of P(z) such that

L@) (@) @ 1) = (&1 @ 1) P(2) (1)

where e, = [1 0 .- O}T € Cland ®(z) = |:¢g_1(2) qbo(z)} T.
Let x be a vector such that x®,(z) = 1 and define X = x® I, and
Y=e ®I, Then

P(2)~" = XL(2)""Y. (2)

Equation (1) can be generalized using an anszatz of FaRbender and
Saltenberger (2017).



Premultiplying eq (1) by L=(2) and post-multiplying by P~'(z), we

have
In ¢Z—1(Z)In

On ¢l—2(z)ln

L7(2) | = P~'(2). 3)

On ¢0(Z)’n

If1= Zﬁ;g Xror(2) is the expression of 1in that basis, then
premultiplying both sides by

X= Xoe—ln Xe—olp ... Xoly

gives the theorem.



The basis is {¢i(z)}‘_, but we only use up to grade ¢ — 1in that
vector. For degree-graded bases (monomial, Chebyshev, Newton, and
the like) this is trivial. However, it's not a given for (e.g.) Bernstein
basis (Mackey & Perovi¢ (2016)) that we may express 1 only using part
of the basis. We can, though, by a trick: If Bf = (;)z"(1 — z)*~* for

0 < k < /s the Bernstein basis of grade ¢, then by “degree
elevation” using

U+ 1B4(2) + (£~ ))Bf(2) = ¢B;7'(2) , (4)

we can still do it. The result is

12 4
X‘{g’g""’g}@””' (5)

Time permitting | will show how to do Lagrange and Hermite
interpolational bases as well.



Algebraic companions

Suppose we have local linearizations (Aq,Bq) for dimension n matrix
polynomial a(z), and (A, By) for b(z) (same dimension), with

Eq(2)(zBg — Ag)Fa(2) =diag(a(z), In,—n)

En(2)(zBp — Ap)Fp(2) =diag(b(2), In,—n) (6)
and we wish to construct a local linearization (Ac,B.) for
c(z) = za(z2)b(z) +d.

Suppose that we do not wish to expand this out, because we are
afraid of making the conditioning worse.



Theorem 1.7 in the GST paper

Let Eq(2) and F,(2) be rational matrices such that if z € ¥, (ie the
region in which the local linearization of a is valid) then E4(z) and
Fa(2) are invertible and E,(2)(zBq — Aq)Fa(2) = diag(a(z), In,—n), and
likewise let E,(2) and Fy(z) be rational matrices such thatif z € ¥,
then Ep(z) and Fy(2) are invertible and

Eb(Z)(ZBb — Ab)Fb(Z) = diag(b(z), INb—n)~

Then the pencil zB. — A¢ is a local linearization of

¢(z) = za(z)b(z) + d for z € ¥, N Xy, where the matrices B. and A. are
given on the next slides:



The constructed (block upper Hessenberg) linearization

and
Aq Own,,n —YqdX,
A= —Xa 0n On,/\/b . (8)
Onpng  —VYb Ap

Here Xg = [1n,0,...,0]F5(2), Ya = E5 '(2)[In, 0, ..., 0]" and likewise
Xg = [In,0,...,0]F, (), and Y, = E;'(2)[In, 0,..., 0]" give the
elements of the (generalized) standard triples for a(z) and b(2).



Why this might be interesting

This gives a whole different class of possible linearizations'. For
instance, consider a variation of Newton’s example polynomial,
namely p(x) = x> — Tx — 5 = x(x — VT)(x + v/T) — 5. Algebraic
linearization gives

VT 0 5
A=| -1 0 0 (9)
0 -1 VT

as a companion matrix. Computing the eigenvalues of this matrix,
when T =2-10° results in a relative error of 1.4 - 10~ in the
smallest eigenvalue, whereas using the Frobenius companion forces
an error of about 1077,

TThe theory is actually in Gohberg, Lancaster, and Rodman, though!



Varying T

Figure 1: Relative error in smallest eigenvalue: Algebraic Linearization vs
Frobenius Linearization, as the parameter T varies in x> — Tx — 5. Fits:
107"° . /T (blue, Algebraic), 10~" - T%/? (red, Frobenius).
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A general cubic

If instead we are given P(z) = Z°A; + 2%A, + ZA; + Ao, we may write it?
as P(z) = z(Asz — By)(zl — B,) + Ag where

A, = BB,
A2 = — (B1 +A3Bz)

Solving the second for By and substituting into the first leads to a
matrix quadratic equation for Bs:

A =—(A,+AsB,)B;. (10)

So, if it's worthwhile to do this to find B; and B, as a preprocessing
step, then we have another potential linearization to use. This seems
that it would be valuable only in cases where the original was poorly
scaled.

ZMatrix polynomials can have nonunique factorizations!




A bigger example

We created an n = 3, grade 5 example by choosing a grade 2 A and a
grade 2 Band a D and forming C = ZAB + D. We perturbed it in two
different ways, and compared the algebraic linearization (Frobenius
for A and B) to the ordinary (2nd) Frobenius linearization for the
explicitly expanded C.



Preliminary results

Figure 2: Pseudospectra of two different kinds of linearizations for our test
equation which is expressed in the monomial basis. The linearization
constructions used are algebraic linearization (left) and Frobenius
linearization (right). [Graph courtesy Eunice Y. S. Chan.]
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Unresolved questions

We think that the potentially improved numerical stability arises
because the height of the new matrices can be lower.

Height(A) := ||vec(A)||~ is @ matrix norm, but not a submultiplicative
one. For instance, consider

HHERRIIEE "

The height of AB is not necessarily less than the height of A times the
height of B.

Also, the height of a matrix can be forced to 1 by scaling, so we are
really worrying about the smallest nonzero elements after such a
scaling.



Minimal height companions/linearizations

If we are given a recursive construction, this idea makes sense. But if
we are given a fully formed matrix polynomial P(z), can we construct
factors in a reasonable way? And how far can this be taken?

An alternative question: if the entries of the (matrix) polynomial
coefficients are integers, what is the minimal height linearization?
And how do we compute it? This looks like a discrete optimization
problem. [I have asked some of my friends for advice but so far they
have all looked rather helplessly at me.]

NB: As exemplified by the Mandelbrot matrices, the minimal height
may be exponentially smaller than the size of the coefficients of the
original polynomial.
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Thank you!

Happy to take questions!
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