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I always make this announcement: Maple Transactions

Maple Transactions
an open access journal with no page charges

mapletransactions.org

We welcome expositions on topics of interest to the Maple
community, including in computer-assisted research in mathematics,
education, and applications. Student papers especially welcome.
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https://mapletransactions.org/index.php/maple


Who is Cleve Moler?

1) A very nice (and smart!) guy
2) The co-founder of Matlab & The Mathworks, i.e.

a) An extremely useful piece of math software (tens of millions
of users)

b) A $1.1B/yr company (!)
3) [Link] his Wikipedia page

Maybe “Moler’s Law” is worth paying attention to?
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Instead of telling you straight out, I’ll sneak up on it

The following occurred on a Grade 11 level Math Contest Exam1

If
xx

x·
··

= 2 , (1)

what is x?

I will pause a minute for you to solve this. Try not to use anything

more advanced than a senior high-school student would use.

1These can be very tricky, in Canada. Do you have them here, too? This example and
the ones that follow will seem pretty “pure” and not have any direct application; that’s
because I want to work with the simplest examples. They’re tricky enough.
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Euler and Condorcet

Leonhard Euler worked on this problem, after hearing that the
Marquis de Condorcet had as well.

[Link] Leonhard Euler was one of the greatest mathematicians ever

[Link] The Marquis de Condorcet was a mathematician but more
importantly one of the greatest political thinkers of the
Enlightenment

4
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Two methods of solution

First and simplest: If

xx
x·
··

= 2 , (2)

then
x2 = 2 , (3)

because the infinite tower is the same. One fewer power makes no
difference.

Therefore x =
√
2 = 1.41412 . . .. We ignore the negative root (for now).
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The second solution (really the same)

Taking logarithms,

ln

(
xx

x·
·· )

= xx
x·
··

ln x = 2 ln x = ln 2 (4)

so ln x = ln 2/2 = ln
√
2 so x =

√
2 again.
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Let’s do it again

If
xx

x·
··

= 4 , (5)

what is x? Again, I will let you solve it.
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Oops?

Solving this the same way we get x4 = 4 or
x = 41/4 = (22)1/4 = 22/4 = 21/2 =

√
2.

Ack! With logarithms? 4 ln x = ln 4 or x =
√
2 again!

2 =
√
2
√
2
√
2·
··

= 4 . (6)

Did we really just prove that 2 = 4?
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Being careful with definitions

Put a0 = 0 and define
an+1 = xan . (7)

Then a1 = x0 = 1, a2 = x1 = x, a3 = xx, a4 = xxx and so on. Now we can
answer questions about the infinite tower by answering questions
about what happens to this infinite sequence.
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Moler’s Law

The hardest thing to compute
is something that doesn’t exist.

—Cleve Moler
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There is no x, with 4

There is an x, namely x =
√
2, such that the infinite tower (in the

precise mathematical sense of limn→∞ an) is 2. But there is no such x
which will make the limit 4, unless we start at a different a0. I will not
prove that here. It’s hard to prove a negative. Moler’s Law applies.

Related: “Perron’s Paradox: Let N be the largest positive integer.
Suppose that N > 1. Then N2 > N, a contradiction. Therefore N = 1.”
[Link] Oskar Perron (1880–1975), a German mathematician

Even if you have computed an answer, you have to be careful.

Also related: “Begging the question.”
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https://en.wikipedia.org/wiki/Oskar_Perron


Integrals

Consider ∫ ∞

x=0

dx
x4 + ex . (8)

This integral isn’t too much stranger than the ones you have seen
already. Maybe something like this could occur in practice.

(See the classic 1980 paper “Handheld calculator evaluates integrals”
by W. Kahan for an excellent discussion of integration in practice)

For another example, consider∫ π/4

x=0
x tan x dx . (9)

That last one looks as though it might occur on an exam. (It did, at
least once.)

12



Both of those exist

Both of those integrals exist, but for the first one there is no short
expression in terms of known functions,2 while the second one can
be expressed only in terms of something you likely haven’t heard of
before. ∫ π/4

x=0
x tan x dx = −π ln(2)

8 +
Catalan

2 . (10)

[Link] Eugène Charles Catalan (1814–1894), a French/Belgian
mathematician

Catalan’s constant is about 0.9159655942.

The indefinite integral/antiderivative/primitive contains a function
you won’t have heard of: the dilogarithm.

2How would you prove such a thing?
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Proving that some things are impossible

“Students are taught integration as a process, that starts with f and
ends with F. But that process hardly ever succeeds. A compact F(u) is
almost always difficult or impossible to construct from a given f(u).”

—William Kahan, Handheld Calculator Evaluates Integrals, p. 24.

You can make a start on the algebraic theory of this, which leads to
what is known as the Risch Integration Algorithm, by trying to prove
that ∫ x

u=1

1
u du (11)

can not be expressed as a polynomial in x or as a ratio of
polynomials in x.
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Continued

But this integral exists perfectly well, and is the natural logarithm.
What “doesn’t exist” in this case is merely an expression in terms of
simpler functions.

Similarly, to express ∫ x

u=1

lnu
1+ u du (12)

one needs a new function (in this case, the “dilogarithm.”) By Maple,∫ x

1

ln(u)
1+ udu =

π2

12 + dilog(x+ 1) + ln(x) ln(x+ 1) . (13)
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Some integrals really don’t exist though

Not only is there no compact finite expression for the following one,
there is no finite value, either:∫ x

u=0

1
u du . (14)

We will return to this.

16



That first integral, again

Figure 1: A section of the graph of f(x) = 1/(x4 + ex).
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Numerical quadrature

One nice thing about numerical quadrature is that you can give real
assurance. Because for this example f is monotonically decreasing3
the Left-hand Riemann sum provides an upper bound, while the
Right-hand Riemann sum provides a lower bound. Using 1000 terms
one can see that

0.7407 <
∫ 3

x=0

dx
x4 + ex < 0.7437 (15)

and more sophisticated schemes will give tighter bounds. More
computer work will give more precision and certainty.

3Students are frequently asked to prove such things
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Left Riemann sum

Figure 2:
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Right Riemann sum

Figure 3:
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The simpler integral of 1/x, now

Taking the points xk = k/N for 1 ≤ k ≤ N we have that, because the
right-hand Riemann sum is a lower bound,∫ 1

u=0

1
u du >

1
N

N∑
k=1

N
k =

N∑
k=1

1
k . (16)

Have you seen already a proof that the sum on the right goes to
infinity as N→ ∞?
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The Trapezoidal Rule

A researcher named Tai reinvented the Trapezoidal Rule in 1994, and
called it4 “Tai’s model.” The paper was published in the journal
Diabetes Care and one of the referees had already noted that this
was not new. Still, the paper has been cited many times. What can
we learn from this?

• Diabetes Care needs numerical integration (!)
• Tai’s teachers did not teach her the Trapezoidal Rule
• Actually, many teachers do not teach numerical methods

4After her parents
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Trapezoidal Rule

Figure 4:
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Midpoint Riemann sum

Figure 5:
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Lower and upper bounds

For functions that are convex up, the midpoint rule provides a lower
bound while the trapezoidal rule provides an upper bound.

0.738 <

∫ 3

0

dx
x4 + ex < 0.750 (17)

with just ten subintervals. Using 1000 as with the Riemann Sum
above,

0.7422549 <

∫ 3

0

dx
x4 + ex < 0.7422561 . (18)

So the integral is 0.742256149 which is likely more accurate than you
need.

This can always be done, for smooth functions.
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What about the tail?

∫ ∞

x=3

dx
x4 + ex <

∫ ∞

x=3

dx
ex = e−3 = 0.049 (19)

So if we really did want more accuracy for the infinite interval we
would need to work not over [0,3] but, say, over [0, 10] and the error
in chopping the tail would be less than e−10 = 4.5× 10−6.
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Looking back

• Students should get training in the technology that they can
(will) use in their working lives. It’s not easy to learn on your
own.

• The technology is always changing. I used Maple for the
examples in this talk, but lots of other systems work as well.

• The mathematics is changing too, but less rapidly (the
Trapezoidal Rule is maybe 2000 years old).

• Understanding how to use the technology responsibly requires
understanding the mathematics
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Some harder examples

Consider the following differential equations:

• y ′ = x2 + y2, with initial condition y(0) = 1
• ẋ = x2 − t2, with initial condition x(0) = −1/2
• y ′ = −√y, with initial condition y(0) = 1 (see [Link] Variations on
a theme of Euler)
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About differential equations

Differential equations and their generalizations provide one of the
main tools for understanding how systems evolve.

• The growth equation y′(t) = Ky(t)
• The logistic equation y′(t) = Ky(t)− Ly2(t)
• [Link] The Black–Scholes (partial) differential equation which
some people argue determines a particular financial reality

• infinitely many more

The ones I showed above are among the simplest. Some equations
can be solved exactly in symbols; most must be solved numerically.

29

https://en.wikipedia.org/wiki/Black-Scholes_equation


Just one of those examples

For y ′ = x2 + y2 consider the two related equations

u ′(x) = 02 + u2(x) (20)
v ′(x) = 12 + v2(x) (21)

with u(0) = y(0) = v(0) = 1. On the interval 0 < x ≤ 1 we can deduce
that u ′(x) < y ′(x) < v ′(x) and hence that u(x) < y(x) < v(x).

Can you solve u ′ = u2? Or v ′ = 1+ v2?
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Those bounding curves

We have

u ′(x)
u2(x) = 1 (22)

v ′(x)
1+ v2(x) = 1 (23)

So, integrating both sides with respect to x,∫ t

x=0

u ′(x)
u2(x) dx =

∫ t

x=0
1dx = t− 0 = t (24)∫ t

x=0

v ′(x)
1+ v2(x) dx =

∫ t

x=0
1dx = t− 0 = t (25)
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Continuing

Or

− 1
u(x)

∣∣∣∣t
x=0

= t (26)

arctan(v(x))|tx=0 = t (27)

and using u(0) = v(0) = 1 we have 1− 1/u(t) = t or u(t) = 1/(1− t)
and arctan v(t)− arctan(1) = t or arctan v(t) = t+ π/4 or
v(t) = tan(t+ π/4).

Both of those functions are singular on 0 ≤ t ≤ 1. Therefore y(x) is
also singular on that interval.

What will happen if we solve the equation y ′(x) = x2 + y2(x) with
y(0) = 1 numerically (naively) on 0 ≤ x ≤ 1?
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A naive numerical solution

Figure 6: A naive numerical solution of y ′ = x2 + y2, y(0) = 1. Moler’s Law
applies.
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Why I tell you these things

• When you are out in the real world, you will use power tools
• You need to be trained in the use of the tools
• You will encounter problems more difficult than these examples
• You need to know when to trust the output of your computer
tools and when not to (“Computational epistemology”)

• Some of your future tools haven’t been invented yet
• You need to develop useful habits of thinking
• Existence (and uniqueness) of solutions is worth money, and
sometimes more than money
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A useful principle

“A good numerical method gives you the exact solution of a nearby
problem”

As discussed in “Variations on a theme of Euler” linked previously,
one way you can check your solution to your differential equation is
to substitute it back into the original equation and see what is left
over. If your solution is Y(x) then compute

r(x) = Y ′(x)− x2 − Y2(x) . (28)

Then r(x) is called the residual. If it is zero,5 then good! But
numerically it will usually be small, not zero.

5Detecting zero is provably impossible in some contexts
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Continued

You have therefore solved

y ′(x) = x2 + y2(x) + r(x) (29)

exactly. Does this equation model your original problem well, if r(x)
is small? What is the effect of this change (“perturbation”) of the
equation?

(Some problems are sensitive to changes—we say “ill-conditioned”).

These questions are sometimes hard, but they are the right
questions to ask in practice.
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Another announcement

Figure 7: A new book from SIAM: Calkin, Chan, & Corless, “Computational
Discovery on Jupyter”, published this week!
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Thank you

Thank you for listening!
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