
Perturbation Methods

using Backward Error

Robert M. Corless

CUNEF University, Madrid, Oct 23 2024

Western University, Canada

Slides available at rcorless.github.io; please download them

Joint work with Nic Fillion

1

rcorless.github.io


Maple Transactions

Announcing Maple Transactions

a “Diamond” class open access journal with no page charges

Now listed by DBLP

mapletransactions.org

An exemplary paper:

Some Instructive Mathematical Errors by Richard P. Brent,

(we will remark on this paper later)
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There must be “a few books” already on Perturbation Methods

Figure 1: RMC and Don Quixote, in Alcalá de Henares, 2017
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Why, on Earth, write another?

Fools rush in where angels fear to tread.

—Alexander Pope, An essay on criticism, written 1709

• There are only two other books that use backward error [5, 6]

• We claim backward error is very useful for perturbation methods∗

• We think computer algebra is still under-utilized nowadays, although

there are some works that use it systematically

• Even though scientific computing has progressed far beyond

perturbation methods, there is still a need for them.

∗ This fact may seem obvious in retrospect. We contend that the

obstacle of hand labour has discouraged full use of backward error in

practice till now. We will see its advantages!
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The goal: short lucid formulae

Numerical solution and graphs (and animations) are truly valuable, but

sometimes a short lucid formula can tell you just as much as an hour

with a simulator and visualization tools can.

This depends on the scientist (or student!) understanding the terms in

the formula, of course!
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Backward error is not purely mathematical

Although backward analysis is a perfectly straightforward

concept there is strong evidence that a training in classical

mathematics leaves one unprepared to adopt it. . . . I have

even detected a note of moral disapproval in the attitude of many

to its use and there is a tendency to seek a forward error analysis

even when a backward error analysis has been spectacularly

successful.

—J. H. Wilkinson, in [Wilkinson1985]
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What is “Backward Error?”

Figure 2: We want to compute φ(x) but we cannot, for some reason. We can

compute ŷ = φ̂(x). This has forward error y − ŷ . But perhaps ŷ = φ(x +∆x)

exactly; ∆x is a “backward error” (this need not be unique). Or perhaps

ŷ = (φ+∆φ)(x); then ∆φ is another kind of backward error.
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That’s not mathematics

Changes in the input data x , to x +∆x , are usual in science

(engineering, economics, psychology, anything). Changes in the

mathematical model φ are also usual: one normally neglects terms and

effects that are considered to be “small” or “unimportant.”

If we can put our errors-in-solution in the same context as these kinds of

data or modelling errors, then we can reuse the tools that we have to use

for such (e.g. the “sensitivity” or “conditioning” of the problem).
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A numerical example

I used linearized Newton’s method to solve wew = 3.0, that is, to

evaluate W (3.0) where W is the Lambert W function. I did this by hand

and I can show you the computations, complete with mistakes.

Initial estimate, w0 = 1.0 because 1.0e1.0 ≈ 2.7182 so

f (w0) = w0e
w0 − 3 ≈ −0.2818. Notice W (2.7182 . . .) = w0 exactly.

The iteration is wk+1 = wk − f (wk)/f
′(w0). Note we never recompute

the derivative f ′(w) = (1 + w)ew . At w = w0, f
′(w0) = 2e ≈ 5.4364.

Then w1 ≈ 1.05018.

The residual f (w1) is w1e
w1 − 3 ≈ 2.99985− 3 ≈ −0.00015.

Equivalently, w1 = W (2.99985). We have found (nearly) the exact value

of W evaluated at a nearby point.

This is a kind of backward error analysis.
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Relation to forward error

From Taylor series, W (x +∆x) ≈ W (x) +W ′(x)∆x (indeed, by the

Mean Value Theorem W (x +∆x) = W (x) +W ′(x + θ∆x)∆x for some

θ ∈ (0,1)). So we need to compute W ′(x): W (x) exp(W (x))− x = 0 so

W ′(x) exp(W (x)) +W (x)W ′(x) exp(W (x))− 1 = 0 or

W ′(x) =
1

(1 +W (x))eW (x)
=

W (x)

x(1 +W (x))
. (1)

Therefore

W ′(2.99985) ≈ 1.05

2.99985(1 + 1.05)
≈ 1

6
, (2)

so we see that the forward error (in this case) is about 1/6 the backward

error. This problem is not sensitive to changes in x near this x . We say

the problem is well-conditioned.
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That’s more important than just forward error

We have learned more than just that we have a good, accurate answer.

We have also learned that other errors in the data (and possibly the

model) will not be amplified. We have learned that this equation is (near

x = 3) insensitive to changes.
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Computing Symbolically

Let’s use the same method to solve f (w) = wew − x = 0 symbolically,

for small x . Choose an initial estimate w0 = 0 so that f ′(w0) = 1. Then

w1 = w0 −
w0e

w0 − x

1
= 0− −x

1
= x (3)

w2 = x − xex − x

1
≈ x − (x(1 + x + · · · )− x) = x − x2 (4)

w3 = w2 −
w2e

w2 − x

1
≈ x − x2 +

3

2
x3 (5)

getting one more term in the series correct with each iteration. Notice

that at each stage we have exactly solved f (w)− f (wk) = 0, a nearby

equation if the residual f (wk) is small. This is trivial but profound.
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For the record

f (w3) =

(
x − x2 +

3

2
x3
)
ex−x2+ 3

2 x
3

− x (6)

=
8

3
x4 +

1

8
x5 +O

(
x6
)

(7)

which is very small if x is small.

In other words, w3 is exactly W (x + 8x4/3 + x5/8 + · · · ), the Lambert

W function evaluated not at x but nearby.
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Small x

Figure 3: w = x − x2 + 3x3/2 is the exact value of W (x + r), where r is

pictured here. On −0.25 ≤ x ≤ 0.25 the difference is less than one percent.

14



Not limited to small x

If our initial estimate is w0 = ln x − ln ln x , then the residual is

f (w0) = (ln(x)− ln(ln(x))) eln(x)−ln(ln(x)) − x (8)

= −x
ln(ln(x))

ln(x)
(9)

which doesn’t look small; but it is, compared to x . Already this w0 is the

exact value of

W

(
x

(
1− ln(ln(x))

ln(x)

))
(10)

which, as x → ∞, is closer and closer to x .

(Tediously slowly: ln ln x/ ln x is still more than 10% at x = 1015. The

relative condition number xW ′/W = 1/(1 +W ) goes to zero as x → ∞
but also slowly, being about 1/32 at x = 1015.)
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An important philosophical point

We have not ever assumed the existence or the convergence of any

infinite series or process.

Everything in this procedure is finite. At the end of every stage we

can decide if our answer is good enough, or not.

As a practical matter, if our answers do not get better each iteration, the

method will fail. So the method can fail. Generally speaking, the

procedure will succeed for “small enough” [“large enough”] values of the

parameter (and we will be able to tell if the values are “small enough”

[“large enough”]).

16



Aging spring, Lengthened pendulum

Some physical problems have natural “secular” (slowly-varying) terms in

them. For instance, consider the “aging spring” [1]:

ÿ + e−εty = 0 . (11)

Cheng and Wu claimed to have used the “two-scale” method to get the

solution exp(εt/4) sin(2(1− exp(−εt/2))/ε). The “WKB method” gets

this solution directly. Its residual is

1

16
ε2e

εt/4 sin

(
2(1− e−

εt/2)

ε

)
. (12)

Is that a “small” residual? It’s a bit hard to tell.
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Better backward error

But! Notice that the residual in equation (12) is just ε2Y (t)/16 where

Y (t) is the computed solution. This means that Y (t) is the exact

solution to

y ′′ +

(
e−εt − ε2

16

)
y(t) = 0 . (13)

This is an equation that we can directly interpret in terms of the original

model.

Notice that the spring constant becomes zero when exp(−εt) = ε2/16,

or t = −2 ln(ε/4)/ε. We thus learn that the approximate solution is

likely not valid for t larger than this, in a way that is consonant with the

mathematical modelling. [Cheng and Wu say that this equation is used in

some kind of quantum application.]
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The aging spring is sensitive to some changes

Figure 4: Taking the derivative with respect to ε shows that the solution is

sensitive to changes in ε. ε = 1/100 here.
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The context matters

Both of those details matter. Changing e−εt to e−εt − ε2/16 introduces

a spurious turning point into the equation. This is likely “not physical”

and demonstrates that for t large enough the Cheng–Wu solution will not

be valid.

The fact that the solution varies strongly when tiny ε is changed by even

a tinier amount is also a kind of ill-conditioning (but somehow it’s “under

control” in the model because we can see its consequences directly).

For both cases, to draw conclusions we need to know the physical

context.
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Perturbation vs Exact Solution

The analysis of the aging spring just performed—exhibiting an

approximate solution that is the exact solution of a nearby problem of

similar type, together with a residual and a condition number—tells us at

least as much information as the exact solution in terms of Bessel

functions would have.

We have identified an important issue, namely the sensitivity of the

solution to changes in the problem, that will still be important for the

exact (reference) solution.
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WKB and backward error

The WKB (Wentzel–Kramers–Brillouin) method (or WKBJ method

where the J is for Jeffreys, or LG method for Liouville–Green, or the

“phase integral” method, even) gives the “solution of physical optics” of

ε2y ′′ = Q(x)y as

yWKB = c1Q(x)−1/4eS(x)/ε + c2Q(x)−1/4e−S(x)/ε (14)

where S(x) =
∫ x

x0

√
Q(ξ) dξ. It’s amazingly simple (once you get used to

it); it’s inspired by the integrating factor for εy ′ = P(x)y which is

I (x) =
∫ x

P(ξ) dξ/ε.

How good is the solution?
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Backward error for WKB

yWKB gives the exact solution to ε2y ′′ = Q̂(x)y where

Q̂(x) = Q(x) + ε2

(
Q ′′

4Q
− 5

(
Q ′

4Q

)2
)

. (15)

There is no further approximation there. That’s a finite formula for the

exact backward error r(x) = ε2Q2(x). The WKB method gives an exact

solution to a nearby equation (provided Q(x) ̸= 0—places where

Q(x) = 0 are called turning points).

We have not seen this fact mentioned in any other textbook.
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Green’s functions and forward error

The forward error is then∫ x

x0

G (x ,ξ)r(ξ)yWKB(ξ) dξ (16)

where G (x ,ξ) is the Green’s function. We can compute it (pretty easily)

for the WKB solution; it is O(1/ε) in size, so the forward error will be

O(ε) as ε → 0.

The Green’s function also (and more importantly) measures the

sensitivity to changes in the equation or model, such as added noise.
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“Small” vs “Small enough”

Since Backward Error Analysis requires the context of the original

problem to be taken into account, this explicitly allows us to consider

whether the computed residual (or other backward error form) is actually

small compared to other neglected effects.

This is not mathematics! Mathematics abstracts, as far as possible, with

the goal of making its results and predictions independent of context.

This is the crux of the matter.

Once this is settled, we can consider conditioning: are such small effects

amplified to the point where we lose all predictability or control, or is the

solution useful?

25



A classical ODE

The “Renormalization Group Method” [2] makes short work of many

nonlinear oscillator problems. Consider the Rayleigh equation

ÿ − εẏ

(
1− 4

3
ẏ2

)
+ y = 0 . (17)

“This RG method works, although it is somewhat inefficient

since it first obtains the naive expansion. . .”

— Robert E. O’Malley [3, p. 187]
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The Renormalization Group method in a nutshell

Take the terms that cause trouble, gather them up, and replace the

troublesome series T by the exponential of the logarithm of T .

Explicitly:

• Choose N and compute the regular solution to O(εN+1) with secular

terms in it, starting with y0(t) = 2A cos(t) = A exp(it)+c.c.

• Gather up the term AyA(t)e
it (we want the coefficient

yA(t) = 1 + O(ε) of the resonant term)

• Compute the logarithm LA(t) of the series

yA(t) = 1 + · · ·+ O(εN+1) and write yA(t) = exp(LA(t))
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Continued

• Replace the initial amplitude A by the time-dependent amplitude

R(t) determined by solving the equation

f (A,R,ε) = R2 − A2(ℜ(yA)2 + ℑ(yA)2) = 0 perturbatively (regular

perturbation works!)

• Determine the differential equations for R(t) and θ(t) via

R ′(t)

R(t)
+ iθ′(t) =

y ′
A(t)

yA(t)
(18)

Set t = 0 after differentiation in the right-hand side, and replace

every A by the R that you found; cf Lie group–Lie algebra

exponential.

• Redo the computation with initial approximation

y(t) = 2R(t) cos(t + θ(t)), using the differential equations for R

and θ as you go along.
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Results for the Rayleigh oscillator

It turns out θ′(t) = 0. Then if y = 2R(t) cos t + εR3(t) cos 3t/3 where

d

dt
R(t) =

ε

2
R(t)

(
1− 4R2(t)

)
(19)

(an equation we may expect students to be able to solve by hand; note

the stable limit cycle at R = 1/2) then y(t) exactly solves

ÿ − εẏ

(
1− 4

3
ẏ2

)
+ y = r(t) = ε2v(t) (20)

where v(t) is precisely known (we have a formula for it, which we can

inspect explicitly, but it’s a little long to present here). Moreover, v(t) is

bounded for all time t.

Among other things, this shows that our computation was free of

blunders. We did this up to order N = 16 (that is, O(ε17)), by the way,

essentially for fun (the code took 35 minutes to do that case).
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The residual r(t) = ε2v(t)

Figure 5: R0 = 0.15 and ε = 0.01. Here N = 1 so the backward error is O(ε2).
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The effects of a small residual

The Rayleigh equation is (near its limit cycle) extremely well-conditioned,

although phase error can accumulate algebraically. The residual r(t),

which is small for small ε > 0, has very little effect on the

solution—which is as it should be, because real physical oscillators are

frequently subject to small forcing oscillations (shaky ground, shaky

table, and the like).

Our highest-order computation, O(ε17), had uniformly very small

residual, which at the limit cycle was well below rounding error size when

ε = 0.2. With N = 13 and ε = 0.4, the residual was about 10−8.
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Resonant terms

Curiously enough, that residual contains resonant terms, in that the

coefficients of sin t and cos t are not zero! This might be surprising, but

one can compute a structured backward error, at the limit cycle, that

looks like this:

ÿ − εẏ

(
1− (1 + ε2A)

4

3
ẏ2

)
+ (1 + ε2B)y = r1(t) = ε2v1(t) (21)

for some bounded quantities A and B and where now the new residual

r1(t) contains no resonant terms. That is, we might interpret the residual

as containing a slight change in frequency and in damping, as well as a

small forcing.

In fact we find A = −1/32 + O(ε2) and B = 1/8 + O(ε2) at the limit

cycle.

This is a structured backward error.
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Absence of secularity

The normal treatment of secularity assumes that one knows ahead of time

that the reference solution to the model problem is bounded. Sometimes

that’s obvious physically, but sometimes one has to prove boundedness

(e.g. with the Duffing equation one finds a conserved integral).

But here if we can find a solution (as here) with a uniformly bounded

residual, this provides its own proof of validity.

The argument looks a bit circular, but it’s not. We used the RG method

to find a solution that had no secular terms in it, and hence which had a

bounded residual, which proved the solution valid (in the context of

modelling errors).
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Morrison’s counterexample

In [3, pp. 192–193], we find a discussion of the equation

y ′′ + y + ε(y ′)3 + 3ε2(y ′) = 0 . (22)

O’Malley’s solution, there and in [4], is incorrect. We claim that had he

computed a residual, he would have identified the blunder∗.

∗ By “blunder” we mean arithmetic error, or algebra error, no more. It’s

just that the word “error” is a bit overused in this field already. Also, I

feel some worry∗ in pointing out this blunder: O’Malley was a giant of

perturbation methods. But we are certain that our solution is correct.

∗ inquietud, intranquilo, desasogado, . . .
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RG Solution

All we need do is to change the differential equation in our Jupyter

notebook script, and alter the interrogations of the solution afterward. At

N = 2, we get

z(t) =2R(t) cos(t + θ(t)) +
εR(t)3 sin(3t + 3θ(t))

4

+ ε2

(
27R(t)5 cos(3t + 3θ(t))

32
− 3R(t)5 cos(5t + 5θ(t))

32

)
(23)

with

Ṙ(t) = −3ε

2
R(t)

(
R(t)2 + ε

)
(24)

and

θ̇(t) =
9

16
R4(t)ε2 . (25)

With this, we get a uniformly small residual, which is small even

compared to the decaying amplitude.
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An important tangent: Published blunders

Off the top of my head, blunders in published perturbation computations

have been exhibited by

• John P. Boyd (a hyperasymptotic expansion)

• Robert E. O’Malley (Morrison’s counterexample)

• Émile Mathieu (in his 1868 paper which defined what are now called

Mathieu functions)

• Bender & Orszag (a plain multiple scales computation, fixed in later

editions)

at least. I claim that had they computed a final residual, they would have

detected their blunders. Given that all of the above are/were experts,

and therefore it’s clear that the rest of us make blunders at least as

frequently, I claim that residuals are even more necessary for us.
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To be fair

Richard Brent was fair enough to include some of his own errors in the

paper “Some instructive mathematical errors” I mentioned previously and

so I should say explicitly that I make blunders, too. In my paper “A

Sequence of Series for the Lambert W function ” I claimed a certain

series had infinite radius of convergence. Richard Crandall pointed out

that I was wrong and the series had radius of convergence
√
2π.

So I am guilty, too!
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Perturbation is just taking derivatives

The simplicity of a perturbation computation hides its importance. We

are investigating what happens if a small part of the model changes.

This is itself a fundamental question of science. It’s not surprising that

the old techniques are still valuable; maybe it’s a surprise just how

valuable they can be.

That said, nowadays one can do a heck of a lot with a simulation window

and a slider bar.
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Thank you for listening.

This work supported by NSERC, and by the Spanish MICINN. I also

thank CUNEF University for the opportunity to give this talk.

I am also happy to announce that SIAM has offered Nic and me a

contract for this book, and we are to deliver it to them by December.

Your feedback today will help to improve the book, and we will

acknowledge you all.

Book text available at https://github.com/rcorless/rcorless.

github.io/blob/main/PerturbationBEABook.pdf. Please download

it and read it and send me (or Nic) your comments, by Nov 10 if possible.

Let’s open the topic for discussion.
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Using computation to illustrate formulae

Let’s try to understand which is bigger, the term exp(−1/ε) or any

algebraic term εj . L’Hopital’s rule shows that as ε → 0+ the exponential

is transcendentally smaller than any εj . But what happens if we ask when

the two are equal?

e−1/ε = εj (26)

exactly when ε−1 = eW−1(−1/j) (on the left) and when ε0 = eW0(−1/j).

Here W−1 and W0 are the two real branches of the Lambert W function.

[Short, lucid formulae, just what we want∗.]

So εj is smaller than exp(−1/ε) if ε−1 < ε < ε0. Paradoxically, this is

most of the interval, for large j!

∗ Heh. ε−1 ∼ 1/(j ln j) and ε0 ∼ 1− 1/j might be easier to understand!
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When is that?

Figure 6: For values of j above this curve, εj < exp(−1/ε). That is, the

“exponentially small” term is more important! Left of the red line is lost to

rounding error in double precision. Note exp(−1/ε) = 2−54 already when

ε = ln(2)/54 ≈ 0.0267.
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