
The Butcher Factor

Robert M. Corless

March 2024

Western University, Canada

woRK 2024, Celebrating the 91st birthday of John C. Butcher

1



Maple Transactions

Announcing Maple Transactions

a “Diamond” class open access journal with no page charges

Now listed by DBLP

mapletransactions.org

2

https://dblp.org/db/journals/maple/index.html
https://mapletransactions.org/index.php/maple


Interpolational polynomials

“...a theorem of great antiquity...the simple theorems of

polynomial interpolation upon which

much practical numerical analysis rests.”

—Philip J. Davis, Interpolation and Approximation

quoted page 290 in Hairer & Wanner II

• Although the idea is very old, new things come up from time to time

(see e.g. [4])

• I will talk about a useful technique introduced in a paper of John’s

published in 1967, namely [3]. I call this technique the Butcher

factor.

• We used the Butcher factor in [2] in 2011 for Birkhoff interpolation,

but I think it deserves wider attention.
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Polynomial bases and numerical condition

Avoid changing the polynomial basis you use, because the condition

number of the change-of-basis matrix is usually exponential in the

degree. [FFT is unusual: condition number is just 1.]

The Lagrange basis is frequently the best-conditioned∗.

The word “interpolation” is usually taken to mean “convert from a

Lagrange basis to the monomial basis.” But it doesn’t have to mean

that. The barycentric forms of the Lagrange interpolational polynomial

are efficient and perfectly (componentwise!) numerically stable.

Hermite interpolational bases, which use derivative data as well, are not

as good, but they are not bad, when the confluencies are not large.

∗ Corless & Watt, 2004, “Bernstein bases are optimal, but, sometimes,

Lagrange bases are better.”
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Example

Suppose the values of a polynomial p are known at the nodes

τ = [−1, − 1/2, 1/2, 1]. Say they are [ρ0, ρ1, ρ2, ρ3]. Then, without

converting to a monomial basis, the polynomial can be written as

p(z) = w(z)

(
−

2ρ0/3

z + 1
+

4ρ1/3

z + 1/2
−

4ρ2/3

z − 1/2
+

2ρ3/3

z − 1

)
(1)

where the node polynomial is w(z) = (z + 1) (z + 1/2) (z − 1/2) (z − 1).
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Second barycentric form

Equivalently but sometimes better, the polynomial may be written as

p(z) =
− 2ρ0/3

z+1 +
4ρ1/3
z+1/2 −

4ρ2/3
z−1/2 +

2ρ3/3
z−1

− 2/3
z+1 +

4/3
z+1/2 −

4/3
z−1/2 +

2/3
z−1

(2)

and a further improvement can be made by cancelling common factors in

the numerator and denominator (this helps to avoid overflow and

underflow for larger examples).

These look ridiculous, but I tell you they’re beautiful. Berrut & Trefethen

2004 and N.J. Higham 2004 proved them to be componentwise

numerically stable: evaluation is fast, and robust.
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Background: Partial Fractions and the Cauchy Integral Formula

Suppose

1

(z − θ)z2(z − 1)2
=
1/θ2(θ − 1)2

z − θ

− 1/θ

z2
− (1 + 2θ)/θ2

z

+
(2θ − 3)/(θ − 1)2

z − 1
+

1/(1− θ)

(z − 1)2
(3)

is written in terms of partial fractions.
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Background continued

Then we can rewrite the equation using a contour that encloses all poles,

as follows. This equation is valid for polynomials p(z) of grade∗ 3:

0 =
1

2πi

∮
C

p(z)

(z − θ)z2(z − 1)2
dz (4)

using that partial fraction expansion together with the Cauchy Integral

Formula
f (j)(a)

j!
=

1

2πi

∮
C

f (z)

(z − a)j+1
dz (5)

as follows.

∗ the word “grade” means “degree at most.” This is a convention widely

used in papers on polynomial eigenvalue problems.
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Background continued

0 =
1

θ2(θ − 1)2
p(θ)

− 1

θ
p′(0)− (1 + 2θ)

θ2
p(0)

+
(2θ − 3)

(θ − 1)2
p(1) +

1

(1− θ)
p′(1) . (6)

Isolating the term containing p(θ) and multiplying by θ2(θ − 1)2 gives

the unique grade 3 Hermite interpolational polynomial with given values

and derivatives at 0 and 1.
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Explicitly

p(θ) = (2θ + 1) (θ − 1)2 p(0)

+ θ2 (3− 2θ) p(1)

+ θ (θ − 1)2 D(p)(0)

+ (θ − 1) θ2D(p)(1) . (7)

[It’s better numerically and for efficiency not to write these this way,

when the grade is much higher. For cubic Hermite, it doesn’t matter.]

This technique is usable by hand, but also works well in a computer

algebra system such as Maple where one can compute residues easily.

“Takes all the fun out of it.” — G. V. Parkinson
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Some applications

General Hermite interpolational polynomials can be constructed using the

node polynomial w(z) =
∏n

i=0(z − τi )
si by expanding

1

w(z)
=

n∑
i=0

si−1∑
j=0

βi,j

(z − τi )j+1
(8)

which gives the “generalized barycentric weights” βi,j . These can be

further used to construct differentiation matrices [1] for polynomials

given by the Hermite interpolational data on these nodes with the given

confluencies sj . That is, the data are local Taylor series for

f (z) = ρi,0 + ρi,1(z − τi ) + ρi,2(z − τi )
2 + · · · ρi,si−1(z − τi )

si−1 known at

each node, with known coefficients ρi,j = f (j)(τi )/j! incorporating the

factorials.
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Barycentric Hermite Interpolational Polynomial

The first and second forms are

p(z) = w(z)
n∑

i=0

si−1∑
j=0

j∑
k=0

βi,jρi,k
(z − τi )j+1−k

(9)

and

p(z) =

∑n
i=0

∑si−1
j=0

∑j
k=0

βi,jρi,k

(z−τi )j+1−k∑n
i=0

∑si−1
j=0

βi,j

(z−τi )j+1

(10)

Both forms are quite numerically stable, unless the confluencies get too

large. The second form allows scaling the βi,j to reduce the impact of

overflow or underflow.
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Enter the Butcher Factor

If we insert a polynomial factor B(z) in the numerator, of degree∗ m,

then we can choose it so as to force m residues to be zero. Fix such a

choice for B(z). Then

0 =
1

2πi

∮
C

B(z)p(z)

(z − θ)w(z)
dz (11)

where, say, the node polynomial w(z) is
∏n

k=0(z − τk)
sk . If

d = −1 +
∑n

k=0 sk then the above formula will be valid for all

polynomials p(z) of grade d −m.

∗ We need degree and not just grade, to know the accuracy/order.
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The first use

John published [3] in 1967, where he used a factor of degree m = 2 to

find an interpolational polynomial that would allow him to add derivative

evaluations at xn − hu and xn − hv to a multistep formula in order to

break some order barriers. The node polynomial was

w(z) = (z + hu)2(z + hv)2
k∏

j=0

(z + hj)2 (12)

where u ̸= v and neither u nor v were in {0, 1, . . . , k}. He wrote the

factor (he used φ(z) in place of B(z)/w(z)) in a way equivalent to the

following:

B(z)

K (k!)2h2k+2
= (z + hu + hU/2)(z + hv)2 − (z + hv + hV /2)(z + hu)2

for some constants K , U, and V to be determined in order to make two

residues zero and one residue −1. [The z3 terms cancel.]

He gave elegant explicit formulae for these constants.
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John’s solution

1

U
=

k∑
j=0

1

j − u
(13)

1

V
=

k∑
j=0

1

j − v
(14)

1

K
=Hk

(
2

u
+

U

u2
− 2

v
− V

v2

)
+

1

u2
+

U

u3
− 1

v2
− V

v3
. (15)

Here Hk is the harmonic sum 1 + 1/2 + 1/3 + · · · 1/k. Notice that this

solution is for symbolic integer k .
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Birkhoff interpolation

If some of the Hermite interpolational data is missing, then we have what

is called a Birkhoff interpolation problem. Not all such are uniquely

solvable.

Example 1: Asking for a degree two polynomial that satisfies p(0) = p0,

p′(0) = d0, and p′(1) = d1 has a unique solution:

p(x) = p0 + d0x + (d1 − d0)x
2/2.

Example 2: Asking for a degree two polynomial that satisfies p(0) = p0,

p(1) = p1, and p′(1/2) = d1/2 either has no solution or infinitely many.

This problem is not “poised” or “R-regular.” [Suppose p0 = p1—then

p′(1/2) = 0 no matter what p0 is.]
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Butcher factors for Birkhoff interpolation

In [2] we used Butcher factors to solve some quite general Birkhoff

interpolational problems. If the problem was poised, we were able to do

so except on certain algebraic surfaces.
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Setting many residues to zero

If w(z) =
∏k

ℓ=0(z − τℓ)
2 and we want the residue of B(z)/w(z) at

z = τj for 1 ≤ j ≤ k to be zero, put y =
∏

ℓ≥1&ℓ̸=j(z − τℓ)
2 and expand

it in a local Taylor series at z = τj , for instance by taking logarithms:

ln y(z) =
∑

ℓ≥1 & ℓ ̸=j

−2 ln (z − τℓ) + 2πiK (16)

y ′(z)

y(z)
= −2

∑
ℓ≥1 & ℓ̸=j

1

z − τℓ
. (17)
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Continued

So the local Taylor series for y(z) is

y(z) = y(τj)− 2y(τj)

 ∑
ℓ≥1 & ℓ ̸=j

1

τj − τℓ

 (z − τj) + O(z − τj)
2 . (18)

Multiply by B(z) = B(τj) + B ′(τj)(z − τj) + O(z − τj)
2 and we have,

since y(τj) ̸= 0,

B ′(τj)− 2B(τj)

 ∑
ℓ≥1 & ℓ̸=j

1

τj − τℓ

 = 0 . (19)

as the required condition. Typically we will also require the residue at

z = τ0 to be −1. This gives k + 1 equations, normally sufficient for a

degree k Butcher factor. But sometimes we can do better.
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An elegant use of the CIF

In the paper, John∗ gave an elegant construction of Gaussian quadrature

on Legendre points by using the Birkhoff interpolation problem

P(−1) = 0 and P ′(xi ) = p(xi ) for 1 ≤ i ≤ n. The polynomial satisfying

that has P(1) =
∫ 1

−1
p(x) dx . Insisting that this works for all polynomials

of degree 2n gives that the xi are the zeros of a Legendre polynomial. In

this case we could take the Butcher factor to be just B(z) = 1. [See the

paper.]

∗ Yes, that part of the paper was all his.
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Some details

The following holds for all polynomials f (z) of grade 2n:

0 =
1

2πi

∮
C

f (z)

(z + 1)(z − 1)P2(z)
dz . (20)

where P(z) =
∏n

k=1(z − xk). If this gives a quadrature formula, then the

residue at each xk must be zero. Choosing x to be one of the xk and

setting the residue to zero gives (after some work!)

2x

x2 − 1
+

P ′′(x)

P ′(x)
= 0 . (21)

Rearranging that gives (x2 − 1)P ′′(x) + 2xP ′(x) = 0 at each of the n

nodes xk . So that polynomial must be a multiple of P(x) (having the

same zeros and being the same grade and having leading coefficient

n(n+1) ̸= 0). Therefore (z2 − 1)P ′′(z) + 2zP ′(z)− n(n+1)P(z) = 0 so

P(z) is a multiple of a Legendre polynomial. ♮
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Some Maple code

In September 2009 I wrote a Maple procedure, BHBIP.mpl, to use this

method. It can construct the Hermite–Birkhoff interpolational polynomial

explicitly, or it can “fill in” the missing data.

Piers Lawrence wrote a Matlab version of the code.

22



Filling in missing data

If only one piece of data is missing, then we do not need a Butcher

factor. Simply expanding 1/w(z) in partial fractions gives us (after

contour integration) an equation for the missing piece of information.

More generally, if we are missing m pieces of information, we can use a

Butcher factor of degree m − 1 for each one.

Even better, if we wish to fill in all the missing data, we can do this all at

once by inverting an m − 1 by m − 1 matrix∗.

∗ This is nearly the only time I have ever explicitly used a matrix inverse

in any of my codes. The reason is that each column of the inverse gives

the coefficients of the Butcher factor of degree m − 1 needed to identify

one of the missing pieces of data.

23



A more complicated example

Suppose we know that p(0) = y0, p
′(0) = d0, p

′(c1) = f1, p
′(c2) = f2,

p(1) = y1, and p′(1) = d1. So the function values at x = c2 and x = c1
are missing. Then the fill-in technique needs only two one-by-one

matrices to set the residues separately to zero. Formulae for the missing

data look like

p(c1) = ay0 + bd0 + cf1 + df2 + ey1 + fd1 (22)

where (for instance)

b = −
(
3c1c2 − 5c22 − c1 + 3c2

)
c1 (c1 − 1)3

2c2 (10c1c2 − 5c1 − 5c2 + 3)
. (23)

Notice the nontrivial combination of c1 and c2 in the denominator. For

this technique to succeed, that polynomial cannot be zero. But in fact

the problem is not poised if

2c1c2 (c2 − 1) (c1 − 1) (10c1c2 − 5c1 − 5c2 + 3) (c2 − c1) = 0 . (24)
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The forbidden c1 and c2

Figure 1: If the point (c1,c2) lies on the blue curves, or else if

c1c2(c1 − c2) = 0, the Birkhoff interpolation problem is not poised.
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Human vs Computer

Any given Birkhoff interpolation problem of explicit dimension can

instead be solved directly by setting up a linear system of equations. The

matrix will be a submatrix of a confluent Vandermonde matrix. For

computers, it’s not clear at first that the Butcher factor technique offers

much advantage. The matrices needed are smaller, yes, but the setup is

more involved.

A big disadvantage of the Vandermonde approach if floating-point

arithmetic is involved is that this changes the basis, which if the grade is

at all large may introduce serious numerical instability. It is (generally

speaking) much better to stay in the same polynomial basis, if you can.

Indeed, my preferred way to write a Butcher factor is in a Lagrange

interpolational basis!
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Human considerations

The gain in insight is potentially considerable, and moreover one can (as

John did in 1967) solve problems of symbolic dimension, for arbitrary

integers k. [One can do that with the code as well, but only by solving a

few cases k = 1, k = 2, k = 7, whatever, and guessing the general form.

If we’re lucky we could prove it afterwards.]

A disadvantage of the Butcher factor is that sometimes, even if the

problem is poised, the technique can fail. The Butcher factor is not

allowed to have a zero at any of the nodes (and if we are unlucky, this

can happen, say for symmetry reasons). The technique needs to be used

carefully.
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One such example

Suppose τ = [−1, 0, 1] are the nodes, and we know p(τ0) = ρ0,

p′′(τ1) = d2, and p(τ2) = ρ2. This problem is poised: using the

Vandermonde approach produces

p(z) = (ρ0 + ρ2 + d2)/2 + (ρ2 − ρ0)z/2 + d2z
2/2 easily enough. But

asking for a Butcher factor that makes zero the two residues at z = 0

corresponding to p(0) and p′(0) forces B(z) = α(1− z2), which cancels

the factors (z + 1)(z − 1) of the node polynomial.

So the technique doesn’t always work.
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Even so, the method can be useful

If one has code to evaluate Hermite interpolational polynomials already,

and to differentiate them, then the “fill-in” technique allows easy

conversion of Birkhoff data to usable Hermite interpolational

polynomials, with no introduced numerical instability.
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Quadrature

Another trick is that one can directly integrate Hermite data: if p(t) has

known local Taylor series at various nodes, then its antiderivative P(t)

with P(t0) = 0 and P ′(t) = p(t) has local Taylor series known at those

nodes, as well, except for the as-yet undefined function values at t1, t2,

. . .. That’s a Birkhoff interpolational problem.
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Example

Suppose τ = [−1, 0, 1] and p(τ) = [p0, p1, p2]. Then

P(τ) = [[0,p0], [NaN,p1], [NaN,p2]] (Maple uses undefined for NaN).

Using the fill-in technique on this gives

P(τ) =

[
[0, p0],

[
5p0
12

+
2p1
3

− p2
12

, p1

]
,

[
p0
3

+
4p1
3

+
p2
3
, p2

]]
(25)

and we see the familiar Simpson’s rule formula pop out at the end. Note

that p was grade 2, while P must be grade 3. [As is well-known,

Simpson’s rule has an extra degree of accuracy, one more than is shown

here, because one residue is zero.]

If instead the nodes are [−1, − 1/2, 1/2, 1] then the integral at the end is
p0
9 + 8p1

9 + 8p2
9 + p3

9 which is accurate at least for p of grade 3.

This isn’t completely straightforward if there are other missing data, and

I have examples where the approach surprisingly fails.
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But it’s pretty good

Suppose for example that the nodes are [−1,− 1/2,1/2, 1] and we know

f (−1) = p0, f (1/2) = p2, and f (1) = p3 but for some reason we only

know f ′(− 1/2) = d1. Finding a polynomial interpolant for that data is

already a Birkhoff problem. Now suppose that what we really want is not

f but its integral across the interval. Then the Maple code tells us that∫ 1

−1

f (x) dx ≈ 25p0
9

+
8d1
3

− 16p2
9

+ p3 (26)

and this formula will be exact for polynomials f (x) of grade 3.
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Dufton’s quadrature method

In one of the annotated bibliographies of the 1933 book that John and I

will talk about on Friday, we find a reference to a paper by von Mises

which analyzes the following formula originally due to A. F. Dufton:∫ 1

0

f (t) dt ≈ 1

4
(f (0.1) + f (0.4) + f (0.6) + f (0.9)) . (27)

Dufton’s derivation of the formula split the interval in two, but we will do

something different.
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Using a Butcher factor

Consider

B(z)

z(z − 1/10)2(z − 4/10)2(z − 6/10)2(z − 9/10)2(z − 1)
(28)

and expand it in partial fractions, choosing B(z) to make the residues at

k/10 zero for k = 1, 4, 6, and 9.

Then the method gives the formula

I ≈ 22

90
f

(
1

10

)
+

23

90
f

(
4

10

)
+

23

90
f

(
6

10

)
+

22

90
f

(
9

10

)
(29)

and this is exact for all f of grade 3 and is thus fourth-order accurate.

Dufton’s formula is only second-order accurate: but 22/90 ≈ 0.244 and

23/90 ≈ 0.256 so the error coefficients will be small. It’s a pretty good

rule, really!
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Might we do better?

We can’t get fourth order accurate without awkward abscissæ for hand

computation (those are the constraints we set ourselves).

Can we find a similar rule that has smaller error, and is similarly

convenient? If we apply the Butcher factor approach for symbolic

abscissæ, we can solve them to find

x =
1

2
± sin θ√

6
,
1

2
± cos θ√

6
(30)

will have all weights equal to 1/4 for any θ, and give fourth order

accuracy. The
√
6 is a problem, but we can choose θ so that one of

sin(θ)/
√
6 or cos(θ)/

√
6 is rational; that will make two of the points

rational.
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But not all four

No matter what we do, at least two of the nodes will be irrational. But

can we choose a little better than Dufton’s rule?

Yes. If we take 1/2− sin(θ)/
√
6 = 1/8 then it turns out∗ that

1/2− cos(θ)/
√
(6) = 1/2−

√
15/24 = 0.3386 is “pretty close” to 1/3.

This gives the rule∫ 1

0

f (t) dt ≈ 1

4
(f (1/8) + f (1/3) + f (2/3) + f (7/8)) (31)

which is (slightly) better than Dufton’s rule (and still eminently practical

for hand computation). Could we do better yet? Maybe, but it is only an

academic game, potentially to be “relegated to the category of useless

things!”

∗ found by brute force and continued fractions
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A comparison

f (t) New error/Dufton error

exp(t) 0.40

sin(t) 0.64

W (t) −0.39

t5 −1.5√
t 3.0

ln(1 + t) 0.18

We see that when the integrand has a sharp slope at one end, the Dufton

rule does better; both rules are “open” but the new one samples closer to

the interior.

The correct weights for this new rule are 16/65 ≈ 0.2461 and

33/130 ≈ 0.2538 and that would make the rule fourth order accurate.

Dufton’s rule had 22/90 ≈ 0.244 and 23/90 ≈ 0.256, which were farther

from 1/4.
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Differentiation and the Squire–Trapp formula

For analytic f (z),

f ′(z) =
ℑ(f (z + ih))

h
+ O(h2) (32)

with typically∗ almost no degradation from rounding errors as h → 0 and

O(h2) goes to unit roundoff.

The formula works very well to differentiate a Hermite–Birkhoff

interpolational polynomial (remember that you are differentiating the

polynomial and not the function it approximates). This technique

compares very well to using the differentiation matrix for Hermite

interpolational polynomials, especially if only a few values of the

derivative are needed.

∗ If your function f (z) is not coded well, there can be problems. For

instance, Γ(z) in Matlab for large z > 0.
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Thank you for listening.

This work supported by NSERC, and by the Spanish MICINN.

I would like to particularly thank Erik Postma and my other co-authors,

and especially to thank John C. Butcher for teaching me the contour

integral technique for interpolation, by which I (re)derived all these

formulae.

Happy Birthday, John!
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